期刊文献+

用户聚类的电子商务推荐系统研究 被引量:1

Research on User Clustering of Recommendation System in E-commerce
下载PDF
导出
摘要 随着电子商务规模越来越大,协同过滤推荐算法的可扩展性差的问题也越来越受到人们的重视,提出了一种基于用户项目类偏好值矩阵聚类的合作推荐方法,解决了"冷开始"问题,并且由于只在目标用户所属类别中搜索其最近邻居,减少了搜索空间,有效地提高了推荐系统的实时响应速度. Nowadays, with the scale of E-commerce is getting larger and larger, more importance has been attached to the problem of poor expansibility appearing in collaborative filtering recommendation al- gorithm. This paper describes a method of cooperative recommendation based on user-item preference values and matrix clustering, which has solved "cold start" problem to some extent. This method only searching for its nearest neighbor in the classification of object user, so the search space is reduced and the real-time performance of the recommendation system can be effectively improved.
出处 《兰州工业高等专科学校学报》 2009年第3期11-13,共3页 Journal of Lanzhou Higher Polytechnical College
关键词 电子商务 协调过滤 算法 推荐系统 E-commerce collaborativefiltering algorithm recommendation system
  • 相关文献

参考文献3

二级参考文献29

  • 1Resnick and Varian. Recommender systems[J]. Communications of the ACM, 1997,40(3):56-58.
  • 2LAWRENCE R D, ALMASI G S, KOTLYAR V, et al. Personalization of supermarket product recommendations[R]. IBM Research Report, 2000.
  • 3SARWAR B M, KARYPIS G, KONSTAN J A, et al. Analysis of recommendation algorithms for e-commerce[A]. Proceedings of the ACM EC'00 Conference[C]. Minneapolis, MN.,2000.158-167.
  • 4RESNICK P, IACOVOU N, SUCHAK M, et al. Grouplens:an open architecture for collaborative filtering of netnews[A]. Proceedings of the Conference on Computer Supported Cooperative Work[C]. Chapel Hill, NC, 1994.175-186.
  • 5SHARDANAND U, MAES P. Social information filtering: algorithms for automating "word of mouth"[A].In Proceedings of the ACM CHI Conference(CHI95)[C].1995.
  • 6GOLDBERG D,NICHOLS D,OKI B M,et al.Using collaborative filtering to weave an information apestry[J]. Communications of the ACM,1992,35(12):61-70.
  • 7SCHAFER J B, KONSTAN J,RIEDL J.Recommender systems in e-commerce[A]. Proceedings of the First ACM Conference on Electronic Commerce[C]. Denver, CO, 1999.158-166.
  • 8BEN J, KONSTAN J A, JOHN R.E-commerce recommendation applications[R]. University of Minnesota,2001.
  • 9BREESE J, HECKERMAN D,KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[A]. In Proceedings of the 14th Conference on Uncertaintly in Artificial Intelligence[C].1998.43-52.
  • 10PREM M,RAYMOND J,RAMADASS N.Content-boosted collaborative filtering for improved recommendations[R]. Department of Computer Sciences,University of Texas Austin, TX 78712.

共引文献161

同被引文献12

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部