期刊文献+

二元外代数的Z_2×Z_2-Galois覆盖代数的Hochschild(上)同调群

Hochschild(co)homology groups of Z_2×Z_2-Galois covering of exterior algebra in two variables
下载PDF
导出
摘要 设∧是特征不整除4的域k上的二元外代数,五是以的Z2×Z2-Galois覆盖代数.利用组合的方法,覆盖代数∧的各阶Hochschild(上)同调群的维数被清晰地计算,并且在域k的特征为零时,五的各阶循环同调群的维数也被给出. Let A be the exterior algebra in two variabls over a field k with chark 4, ∧ be theZ2×Z2-Galois covering of ∧. The dimensions of Hochschild homology and cohomology groups of ∧ arecalculated in terms of combinatorics. Moreover, the dimensions of cyclic homology groups of ∧ can be calculated when the characteristic of the underlying field k is zero.
作者 侯波 邹欣
出处 《湖北大学学报(自然科学版)》 CAS 北大核心 2009年第2期113-118,共6页 Journal of Hubei University:Natural Science
基金 国家自然科学青年基金(10501010)资助 湖北省教育厅重点基金(D200510005)资助
关键词 Z2×Z2-Galois覆盖代数 二元外代数 Hochschild(上)同调群 循环同调群 Z2×Z2-Galois covering exterior algebra in two variables Hochschild (co)homology group cyclic homology group
  • 相关文献

参考文献14

  • 1Hochschild G. On the cohomology groups of associative algebra[J]. Ann Math, 1945,64:58-67.
  • 2Happel D. Hochschild cohomology of finite-dimensional algebras[M].Berlin: Springer, 1989,108-126.
  • 3Gerstenhaber M. On the deformation of rings and algebras[J]. Ann Math, 1964,79:59-103.
  • 4Skowronski A. Simply connected algebras and Hochschild cohomology[J]. Prroe ICRA IV (Ottawa, 1992), Can Math Soc Proc, 1993,14 : 431-447.
  • 5Han Y. Hochschild (co)homology dimension[J]. J London Math Soc,2006,73(2):657-668.
  • 6Igusa K. Notes on the no loop conjecture[J]. J Pure Appl Algebra, 1990,69:161-176.
  • 7Avramov L L, Viguee-Poirrier M. Hochschild homology criteria for smoothness [J].Internat Math Research Notices, 1992,1 : 17-25.
  • 8Cibils C, Redondo M J. Cartan-Leray spectral sequence for Galois coverings of a category overy a ring[J]. Joural of algebra, 2005,284 : 310-325.
  • 9Han Y, Zhao D E. Construction of Koszul algebras by finite Galois covering[J]. Arxiv: math RA/0605773.
  • 10Buchweitz R O, Green E L, Madsen D, et al. Finite Hochschild cohomology without finite global dimension[J]. Math Res lett, 2005,12 : 805-816.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部