摘要
传统的去噪方法需要进行较多的预处理,提出一种基于非张量积小波滤波器和二维主成分分析的图像去噪方法.该方法在不需要预处理的情况下,直接利用原始图像的分解信息进行去噪.利用客观的峰值信噪比(PSNR)和主观视觉效果作为评价标准.仿真实验表明该方法不仅PSNR值较大,而且明显地改善了去噪后的视觉效果.
Developed a novel denoising method based on non-tensor product wavelet filter banks and two-dimension principal component analysis. Unlike conventional tensor product wavelet filter banks which needed some complex preconditioning, our new method needn't do anything else since it made the best of the decomposityon information, employed this novel method to the denoising of some standard images embedded in white noise, the experimental results demonstrated that our novel method could achieve both good visual quality and high PSNR for the denoised images.
出处
《湖北大学学报(自然科学版)》
CAS
北大核心
2009年第2期134-136,共3页
Journal of Hubei University:Natural Science
基金
国家自然科学基金(60403011)资助
关键词
图像去噪
非张量积小波滤波器
二维主成分分析
image denoising
non-tensor product wavelet filter banks
two-dimension principal component analysis