期刊文献+

结合预测误差反馈的高光谱图像无损压缩研究 被引量:1

Lossless Compression for Hyperspectral Images Combined with Predictive Error Feedback
下载PDF
导出
摘要 高光谱图像的海量数据给存储和实时传输带来极大困难,必须对其进行有效压缩。提出了一种结合预测误差反馈的高光谱图像无损压缩算法。根据高光谱图像相邻波段相关性强弱进行波段分组,有效降低了波段排序算法的计算量。通过研究波段排序算法的性能,采用最佳后向排序算法对各组进行波段排序。为有效去除高光谱图像相关性,采用JPEG压缩标准中的无损预测模式对各波段进行谱内预测,利用参考波段预测误差对当前波段谱内预测值进行反馈校正,可进一步提高预测精度。最后,利用JPEG-LS标准对参考波段和预测残差进行无损压缩。对AVIRIS型和OMIS-Ⅰ型高光谱图像的实验结果表明,该算法可显著降低压缩后的平均比特率。 The data size of hyperspectral images is too large for storage or transmission, so it is necessary to compress hyperspec- tral images efficiently. A new lossless compression algorithm for hyperspectral images combined with predictive error feedback is pro- posed. To decrease the reordering computational complexity, spectral band grouping algorithm is introduced to divide hyperspectral ima- ges into several groups according to the correlation coefficient between each adjacent bands, then each group is reordered by using the best reverse reordering algorithm based on the performance analysis of several reordering algorithms. To remove the redundancy efficient- ly, JPEG lossless compression modes are used for intra-prediction of each band, while the predictive errors of reference band are used to revise the intra-prediction values of current band,the final predictive errors are compressed by JPEG-LS standard. Experimental results show that the proposed algorithm can give better lossless coding performance.
出处 《信号处理》 CSCD 北大核心 2009年第6期860-863,共4页 Journal of Signal Processing
基金 国家自然科学基金资助项目(No.60572135) 武器装备预研基金资助项目(No.9140A22020607KG0181) 国防科技大学优秀研究生创新资助项目
关键词 高光谱图像 无损压缩 波段分组 谱间预测 hyperspectral image lossless compression band grouping inter-band prediction
  • 相关文献

参考文献12

  • 1J. Mielikainen, and P. Toivanen. Clustered DPCM for the Lossless Compression of Hyperspectral Images [ J ]. IEEE Transactions on Geoscience and Remote Sensing, vol. gl, no. 12, pp. 2943-2946,2003.
  • 2X. L. Wu, and N. Memon. Context-based, Adaptive, Lossless Image Coding [ J ]. IEEE Transactions on Communi- cations, vol. 45, no. 4, pp. 437- 444,1997.
  • 3L. S. Rodriguez. Fast Piecewise Linear Predictors for Lossless Compression of Hyperspectral Imagery [ D ]. Dissertation for master of Science, University of Puerto Rico Mayaguez Campus, 2003.
  • 4柴焱,计文平,沈兰荪.一种基于混合整型变换和3D-SPIHT的高光谱图像嵌入式无损压缩方法[J].电子学报,2007,35(9):1770-1773. 被引量:6
  • 5苏令华,程翥,万建伟.基于同类邻点预测的高光谱图像无损压缩[J].信号处理,2007,23(4):544-547. 被引量:7
  • 6苏令华,李纲,衣同胜,万建伟.一种稳健的高光谱图像压缩方法[J].光学精密工程,2007,15(10):1609-1615. 被引量:17
  • 7J. Zhang, and G. Z. Liu. An Efficient Reordering Prediction-Based Lossless Compression Algorithm for Hyperspectral Images [ J ]. IEEE Geoseienee and Remote Sensing Letters, vol. 4, no. 2, pp. 283-287,2007.
  • 8G. Motta, F. Rizzo, J. A. Storer. Hyperspectral Data Compression [ M]. New York: Springer US, 2006.
  • 9H. Q. Wang, S. D. Babacan, and K. Sayood. Lossless Hyperspectral Image Compression Using Context-based Conditional Averages [ C ]. Proceedings of the 2005 Data Compression Conference, Utah, USA, pp. 418-426,2005.
  • 10B. Aiazzi, P. S. Alba, L. Alparone et al. Reversible Compression of Multispectral Imagery Based on an Enhanced Inter-Band JPEG Prediction [ C ]. Proceedings of IEEE International on Geoscience and Remote Sensing, vol. 4, pp. 1990-1992,1997.

二级参考文献38

共引文献34

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部