期刊文献+

一种基于反射特性的人脸三维重建方法 被引量:2

Recovery of 3D Shape Based on Reflectance Characteristics
下载PDF
导出
摘要 不同姿势下的人脸识别研究中的一种重要思路就是在三维空间解决姿势变化问题,如何由二维人脸图像得到三维人脸形状是其中的一项关键技术。本文提出了一种由两幅正面人脸图像估计人脸表面反射特性,重建三维形状的算法。首先根据人脸的对称特性,由两幅给定光照的正面人脸图像,估计得到个性化人脸特征:反射特性(反射系数与法向量的乘积),并提出消除鼻梁阴影的改进算法;然后由反射特性重建三维人脸形状,最后根据估计得到的反射特性和三维形状合成不同姿势下的人脸图像,实验结果表明,本文提出算法合成的人脸图像更自然一些,而且合成图像不受训练集图像的影响。本方法计算简单,并且不需要任何三维人脸数据作为先验知识。 one of approaches to face recognition with pose variation is to deal with pose variation in 3D space, but how could we get the 3D shape of a face from corresponding 2D face images is a key issue. In this paper, a new approach is proposed to estimate the reflectance characteristics and 3D shape from two frontal face images. Based on the symmetry of face surface, the subject-specific infor- mation: reflectance characteristics (combining the albedo and normal vector) are estimated from two frontal face images with given illu- mination direction, furthermore the method is improved to eliminate the pseudo-shadow near nose-bridge in the generated face image by threholding. Then the 3D shape is recovered by reflectance characteristics. Finally, the face images with specified pose are synthesized, the experimental results shows that the synthesized face images from different training images are nature and almost same, especially, the computation is simple and 3D face data are unnecessary in proposed approach.
出处 《信号处理》 CSCD 北大核心 2009年第6期994-998,共5页 Journal of Signal Processing
基金 北京市教委科技发展计划项目(KM200610005011) 教育部重点项目(207002) 人才强教计划中青年骨干项目(PHR-IHLB)
关键词 反射特性 三维形状 人脸合成 reflectance characteristics 3D shape face synthesis
  • 相关文献

参考文献14

  • 1W. Zhao, R. Chellappa, A Rosenfeld, P Phillips, Face recognition: A literature survey, [ R ]. Technical Report CAR-TR-948, Center for Automation Research, University of Maryland, College Park, USA ,2003 : 1 - 67.
  • 2Jie Yan, Hongjiang Zhang, Synthesized virtual view-based eigenspace for face recognition. Applications of Computer Vision ,2000 ,Fifth IEEE Workshop,4-6 Dec. 2000:85-90.
  • 3Laurenz Wiskott et al. Face recognition by elastic bunch graph matching. IEEE PAMI 19(7) 1997: 775-779.
  • 4Wenchao Zhang, Shiguang Shan,Wen Gao, Xilin Chen and Hongming Zhang. Local Gabor binary pattern histogram sequence (LGBPHS) : a novel non-statistical model for face representation and recognition. Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference, Volume 1, 17-21 Oct. 2005 Page:786 -791 Vol. 1.
  • 5Blanz,V. , Grother, P. , Phillips, P.J. and Vetter, T. Face recognition based on frontal views generated from non-frontal images. CVPR, 2005. IEEE Computer Society conference, Volume 2,20-25 June 2005 Page: 454 - 461.
  • 6R. Onn, and A. Bruckstein, "Integrability Disambiguates Surface Recovery in Two-Image Photometric Stereo", International Journal of Computer Vision, 5 : 1, pp. 105-113, 1990.
  • 7I. Shimshoni, Y. Moses, and M. Lindenbaumlpr, " Shape Reconstruction of 3D Bilaterally Symmetric Surfaces", International Journal of Computer Vision, Vol. 39 n. 2, pp. 97-110 ,Sep. 2000.
  • 8R. Dovgard, and R. Basri, " Statistical Symmetric Shape from Shading for 3D Structure Recovery of Faces", In Proc. European Conference on Computer Vision, pp. 99- 113, May 2004.
  • 9W. Zhao and R. Chellappa. Symmetric shape from shading using self-ratio image. International Journal of Computer Vision, vol. 45, pp. 55-752, 2001.
  • 10S. Kevin Zhou, Rama Chellappa, and David W. Jacobs.Characterization of Human Faces under Illumination Variations Using Rank, Integrability, and Symmetry Constraints. In European Conference on Computer Vision ,2004 May, 1:588-601.

同被引文献33

  • 1Sharer S A. Using color to separate reflection components [ J ]. Color Research & Application, 1985,10(4) : 210-218.
  • 2Mallick S P, Zickler T, Kriegman D J, Belhumeur P N. Specularity Removal in Images and Videos: A PDE Ap- proach [ C ] // Proceeding ECCV' 06. Berlin, German : Springer, 2006,550 -563.
  • 3Tan R T, Ikeuchi K. Separating reflection components of textured surfaces using a single image[ J]. IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 2005, 27(2) : 178-193.
  • 4Yang Q, Wang S, Ahuja N. Real-time Specular Highlight Removal Using Bilateral Filtering[ C]//Computer Vision- ECCV 2010. Berlin, German :Springer,2010:87-100.
  • 5Hyeongwoo K, Jin H, Hadap S, Kweon I. Specular Re- flection Separation Using Dark Channel Prior [ C ]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR2013). Piscataway, NJ: IEEE, 2013 : 1460-1467.
  • 6Zou B, Zhang X, Liao S, Wang L. Specularity removal using dark channel prior[ J]. Journal of Information Sci- ence and Technology, 2013, 29(5) : 835-849.
  • 7Shen H, Zheng Z. Real-time highlight removal using inten- sity ratio[J]. Applied Optics, 2013, 52(19) : 4483-4493.
  • 8He K, Sun J, Tang X. Guided image filtering [ C ] // Computer Vision-ECCV 2010. Berlin,German:Springer, 2010 : 1-14.
  • 9He K, Sun J, Tang X. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2013, 35(6): 1397-1409.
  • 10Comaniciu D, Meer P. Mean shift: A robust approach to- ward feature space analysis [ J ]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2002, 24 (5): 603-619.

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部