期刊文献+

A cooperative Co-evolutional immune algorithm

A cooperative Co-evolutional immune algorithm
下载PDF
导出
摘要 A co-evolutional immune algorithm for the optimization of a function with real parameters is de-scribed.It uses a cooperative co-evolution of two populations,one is a population of antibodies and theother is a population of successful mutation vectors.These two population evolve together to improve thediversity of the antibodies.The algorithm described is then tested on a suite of optimization problems.The results show that on most of test functions,this algorithm can converge to the global optimum atquicker rate in a given range,the performance of optimization is improved effetely. A co-evolutional immune algorithm for the optimization of a function with real parameters is described. It uses a cooperative co-evolution of two populations, one is a population of antibodies and the other is a population of successful mutation vectors. These two population evolve together to improve the diversity of the antibodies. The algorithm described is then tested on a suite of optimization problems. The results show that on most of test functions, this algorithm can converge to the global optimum at quicker rate in a given range, the performance of optimization is improved effetely.
出处 《High Technology Letters》 EI CAS 2009年第2期126-130,共5页 高技术通讯(英文版)
基金 Supported by the National Fundamental Research Project(A1420060159)
关键词 IMMUNITY CO-EVOLUTION CLONE MUTATION optimization real-parameter 合作社 免疫算法 人口突变 人口发展
  • 相关文献

参考文献13

  • 1莫宏伟,金鸿章.用于函数优化的改进免疫克隆多样性算法[J].哈尔滨工程大学学报,2004,25(1):76-79. 被引量:14
  • 2张著洪,黄席樾.一种新的免疫算法及其在多模态函数优化中的应用[J].控制理论与应用,2004,21(1):17-21. 被引量:28
  • 3L. N. de Castro,J. I. Timmis.Artificial immune systems as a novel soft computing paradigm[J].Soft Computing.2003(8)
  • 4Yu Y,Hou C Z.A clonal selection algorithm by using learning operator[].Proceedings of the Third International Conference on Machine Learning and Cybernetics.2004
  • 5Acan A.Clonal selection algorithm with operator multiplicity[].Proceedings of the Congress on Evolutionary Computation.2004
  • 6Bick T,Fogel D B,Michalewicz Z, et al.Evolutionary Computation 1 : Basic Algorithms and Operators[]..2000
  • 7Garrett S M.Parameter-free, adaptive clonal selection[].Proceeding of the IEEE Congress on Evolutionary Computation.2004
  • 8Burnet F M.The Clonal Selection Theory of Acquired Immunity[]..1959
  • 9De Castro LN,Von Zuben FJ.The clonal selection algorithm with engineering applications[].Proceedings of GECCO’ Workshop on Artificial Immune Systems and Their Applications.2000
  • 10de Castro L N,von Zuben F J.Learning and optimization using the clonal selection principle[].IEEE Transactions on Evolutionary Computation Special Issue on Artificial Immune Systems.2002

二级参考文献20

  • 1[1]de CASTRO L N, Von ZUBEN F J. Learning and optimization using the clonal selection principle [J]. IEEE Trans on Evolutionary Computation, Special Issue on Artificial Immune Systems, 2002, 6(3):239-251.
  • 2[3]de CASTRO L N. The Clonal Selection Algorithm with Engineering Applications [C]∥In Workshop Proc of GECC'00, Workshop on Artificial Immune Systems and Their Applications,[s.l.]:[s.n.],2000:36-37.
  • 3[4]ZHANG Z H, HUANG X Y, MA X X. A Novel Fuzzy Immune Control System and Its Application to Multi-modal Function Optimization [C]∥ Proc of the 2002 Int Conf on Control and Automation.[s.l.]:[s.n.],2002:777-780.
  • 4[5]JIAOL C, WANG L. A novel genetic algorithm based on immunity [J]. IEEE Trans on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2000,30(5):552-561.
  • 5FORREST S, JAVORNIK B, SMITH R, et al. Using genetic algorithms to explore pattern recognition in the Immune System[ J ]. Evolutionary Compuation, 1993, 1 (3): 191 -211.
  • 6SMITH R, FORREST S, PERELSON A S. Searching for diverse, cooperative populations with genetic algorithms[J].Evolutionary Compuation, 1993,1 (2) : 127 - 149.
  • 7SPEARS W M. Proc. 2nd foundations of genetic algorithms workshop (Whitley D, Ed. )[C]. San Mateo, CA: Morgan Kaufmann, 1992.
  • 8CASTRO L N,ZUBEN F J. Data mining: A heuristic approach[ M]. Hershey: Idea Group Publishing, 2001.
  • 9GOLDBERG D E. Genetic algorithms in search, optimization and machine learning[ M ]. Boston: Addison - Wesley,1989.
  • 10WIERZCHOA S T. Function optimization by the immune metaphor[ J ]. Task quarterly, 2002,6 (3) : 1 - 16.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部