摘要
研究具有Logistic增长和病程的SIR流行病模型.运用微分、积分方程理论,得到再生数R0<1时,无病平衡点E0是全局渐近稳定的;而当R0>1时,地方病平衡点E*是局部渐近稳定的.
It is diseussed a SIR epidemic model with Logistic growth and infection age. The disease-free equilibrium E0 is globally asymptotically stable if R0 〈 1, and also the endemic equilibrium E^* is locally asymptotically stable if R0 〉 1, by using the theory of differential and integral equation.
出处
《数学的实践与认识》
CSCD
北大核心
2009年第11期120-124,共5页
Mathematics in Practice and Theory
基金
山西省科技开发项目(20081045)
运城学院院级科研项目(20060218)