期刊文献+

一类具有Logistic增长和病程的SIR模型 被引量:2

A Class SIR Epidemic Model with Logistic Growth and Infection Age
原文传递
导出
摘要 研究具有Logistic增长和病程的SIR流行病模型.运用微分、积分方程理论,得到再生数R0<1时,无病平衡点E0是全局渐近稳定的;而当R0>1时,地方病平衡点E*是局部渐近稳定的. It is diseussed a SIR epidemic model with Logistic growth and infection age. The disease-free equilibrium E0 is globally asymptotically stable if R0 〈 1, and also the endemic equilibrium E^* is locally asymptotically stable if R0 〉 1, by using the theory of differential and integral equation.
出处 《数学的实践与认识》 CSCD 北大核心 2009年第11期120-124,共5页 Mathematics in Practice and Theory
基金 山西省科技开发项目(20081045) 运城学院院级科研项目(20060218)
关键词 数学模型 LOGISTIC增长 再生数 平衡点 稳定性 mathematical models Logistic growth reproductive number equilibrium stability
  • 相关文献

参考文献6

  • 1lannelli M, Kim M Y, Park E J. Asymptotic behavior for an SIS epidemic modeland its approximation[J]. Nonlinear Analysis, 1997,35: 797-814.
  • 2Li X, Geni G, Zhu G. The threshold and stability results for an age-structured SEIR epidemic model[J]. Comput Math Appl, 2001,42:883-907.
  • 3El-Doma M. Analysis of an age-dependent SIS epidemic model with vertical transmission and proportionate mixing assumption[J]. Math Comput Model, 1999, (29): 31-43.
  • 4王晓燕,杨俊元.具有Logistic增长和年龄结构的SIS模型[J].数学的实践与认识,2007,37(15):99-103. 被引量:9
  • 5Yang J Y, Xu R, Zhang F Q, Wang X Y. A differential susceptibility and infectivity epidemic model with age of infection[J]. Res Sci Math J ,2007, (11):582-589.
  • 6MILLER R K. Nonlinear Volterra Integral Equations[M]. W A Benjamin Inc, New York,1971.

二级参考文献6

  • 1杨光,张庆灵.对Logistic增长的SIS模型实现反馈线性化和极点配置的一步设计[J].生物数学学报,2006,21(2):261-269. 被引量:4
  • 2Feng Z. Thieme HR. Recurrent outbreaks of childhood disease revisited: The impact of isolation[J]. Math Biosci, 1995.128(2):93-130.
  • 3Miller R K. Nonlinear Volterra Integral Equations[M]. W A Benjamin Inc, New York,1971.
  • 4Iannelli M, Kim M Y, Park E J. Asymptotic behavior for an SIS epidemic model and its approximation[J]. Nonlinear Analysis , 1997,35 : 797-814.
  • 5Li X, Geni G, Zhu G. The threshold and stability results for an age-structured SEIR epidemic model[J]. Comput Math Appl,2001,42:883-907.
  • 6El-Doma M. Analysis of an age-dependent SIS epidemic model with vertical transmission and proportionate mixing assumption[J]. Math Comput Model,1999.29:31-43.

共引文献8

同被引文献21

  • 1王雨时.弹丸战斗部及其破片空气阻力系数的Logistic曲线分段拟合[J].弹箭与制导学报,2006,26(S1):242-244. 被引量:16
  • 2龙文,王惠文.成分数据偏最小二乘Logistic回归模型及其应用[J].数量经济技术经济研究,2006,23(9):156-160. 被引量:3
  • 3王晓燕,杨俊元.具有Logistic增长和年龄结构的SIS模型[J].数学的实践与认识,2007,37(15):99-103. 被引量:9
  • 4Kermack W O, Mc Kendrick A G. Contribution to the mathematical theory of epidemics[J]. Proc. Roy. Soc., 1932,138(1): 55-83.
  • 5Li J, Ma Z. Qualitative analyses of SIS epidemic model with vaccination varying total population size[J]. Mathe- matical and Computer Modeling, 2002,35:1 235-1 243.
  • 6Su Ying,Wei Junjie,Shi Junping. Hopf bifurcation in a dif- fusive logistic equation with mixed delayed and instanta- neous density dependence[J]. Dynamics and Differential Equations, 2012,24 : 897-925.
  • 7Shengle Fang, Minghui Jiang. Stability and hopf bifurca- tion for a regulated logistic growth model with discrete and distributed delays[J]. Communications in Nonlinear Science and Numerical Simulation, 2009,14 ( 12 ) : 4 292- 4 303.
  • 8Huaixing Lia, Yoshiaki Muroyab, Yukihiko Nakatab, et al. Global stability of nonautonomous logistic equations with a piecewise constant delay[J]. Nonlinear Dynamics, 2010,11(3):2 115-2 126.
  • 9Shanshan Chen,Junping Shi. Stability and hopf bifurcation in a diffusive logistic population model with nonlocal delay effeet[J]. Journal of Differential Equations, 2012, 253 (12):3 440-3 470.
  • 10徐为坚.具有种群Logistic增长及饱和传染率的SIS模型的稳定性和Hopf分支[J].数学物理学报(A辑),2008,28(3):578-584. 被引量:18

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部