期刊文献+

基于Kane方法的仿鱼机器人波状游动的动力学建模 被引量:21

Dynamic Modeling of a Fishlike Robot with Undulatory Motion Based on Kane’s Method
下载PDF
导出
摘要 提出了基于Kane方法的仿鱼机器人波状游动的动力学模型。通过对鱼体波状游动的运动学描述,将仿鱼机器人离散成刚性头部、柔性身体和摆动尾鳍三个部分并划分为多个运动环节进行分析,考虑鱼体外部环境的作用力:流体附加质量、流体加速作用的弗劳德—克里洛夫力、鱼体游动过程中的阻力特征,建立仿鱼机器人的动力学模型。数值实例表明,利用该动力学模型,能够有效地实现给定鱼体各环节的运动参数求解作用力矩、给定作用力矩求解运动规律,进一步设计仿鱼机器人各环节的运动规律,寻找一种实现鱼体推进力最大和推进效率最高的规划方法。该动力学模型的建立为研究仿鱼机器人的运动控制算法和规划算法,揭示鱼体利用流场能量的动力学机理提供了重要理论支撑。 A dynamic model of a fishlike robot with undulatory motion based on Kane's method is presented. Through kinematic description of the fish body with undulatory movement, the fishlike robot is divided into rigid head, flexible body and oscillating caudal fin which include many motion links. The dynamic model for a fishlike robot with multiple motion links is developed with the consideration of external environmental forces, such as the fluid added mass, the Froude-Kriloff force of fluid acceleration and the flow drag during fish swimming. The numerical example shows that acting moment of a motion link can be solved for given value of motion parameters with the exploitation of the dynamic model, and vice versa. Furthermore, the planning technique for the maximum thrust and highest propulsive efficiency can be explored by designing the motion law for each motion link. The dynamic model developed is a key theoretical support to the research on motion control algorithm as well as planning algorithm, and the revelation of dynamic mechanism of fish exploiting flow energy.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2009年第6期41-49,共9页 Journal of Mechanical Engineering
基金 国家自然科学基金(59705011) 哈尔滨工业大学机器人技术与系统国家重点实验室自主研究基金(SKLRS200801C)资助项目
关键词 仿鱼机器人 动力学模型 KANE方法 运动环节 Fishlike robot Dynamic model Kane method Motion link
  • 相关文献

参考文献21

  • 1喻俊志,陈尔奎,王硕,谭民.仿生机器鱼研究的进展与分析[J].控制理论与应用,2003,20(4):485-491. 被引量:59
  • 2LONG J H, Biomimetic robotics: Self-propelled physical models test hypotheses about the mechanics and evolution of swimming vertebrates[J]. J. Mech. Eng. Sci., 2007,221(10): 1 193-1200.
  • 3ALVARADO P V, YOUCEF T K. Design of machines with compliant bodies for biomimetic locomotion in liquid environments[J]. Journal of DYrlamic Systems, Measurement and Control, 2006, 128: 3-13.
  • 4王田苗,梁建宏.基于理想推进器理论的尾鳍推力与效率估算[J].机械工程学报,2005,41(8):18-23. 被引量:20
  • 5KORAY K S, GEORGE G A. Dynamic modeling and hydrodynamic performance of biomimetic underwater robot locomotion[J]. Autonomous Robotics, 2002, 13:223-240.
  • 6EUNJUNG K. YOUNGIL Y. Design and dynamic analysis of fish robot: PoTuna[C]// 2004 IEEE International Conference on Robotics and Automation, April 26-May 1, 2004, New Orleans, LA, United States. Piscataway, NJ: IEEE, 2004:4 887-4 892.
  • 7GRAY J. Studies in animal locomotion VI: The propulsive powers of the dolphin[J]. J. Exp. BioL, 1936, 13: 192-199.
  • 8TAYLOR G. Analysis of the swimming of long narrow animals[J]. Proc. R. Soc. Lond. A, 1952, 214: 158-183.
  • 9LIGHTHILL M J. Note on the swimming of slender fish[J]. Journal of Fluid Mechanics, 1960, 9: 305-317.
  • 10WU T Y. Swimming of a waving plate[J]. Journal of Fluid Mechanics, 1961, 10: 321-344.

二级参考文献48

  • 1蒋新松.未来机器人技术发展方向的探讨[A]..迈向新世纪的中国机器人-国家863计划智能机器人主题回顾与展望[C].沈阳:辽宁科学技术出版社,2001.199—206.
  • 2HIRATA K. A semi free piston stirling engine for a fish robot [A].Proc of 10th Int Stirling Engine Canf [C]. [s.l. ]: [s.n. ] ,2001 :146- 151.
  • 3GRAY J. Studies in animal locomotion VI--The propulsive powers of the dolphin [J]. J of Experimental Biology, 1936,13(5): 192 -199.
  • 4TRIANTAFYLLOU M S, TRIANTAFYLLOU G S, YUE D K P.Hydrodynamics of fishlike swimming [J]. Annual Review of Fluid Mechanics, 2000, 32(1):33-53.
  • 5DRUCKER E G, LAUDER G V. Locomotor function of the dorsal fin in teleost fishes: Experimental analysis of wake forces in sunfish[J]. J of Experimental Biology, 2001,204(17):2943-2958.
  • 6DRUCKER E G, LAUDER G V. Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry [J]. J of Experimental Biology, 1999,202(18) :2393 - 2412.
  • 7ANDERSON J M, KERREBROCK K. The vorticity control unmanned undersea vehicle(VCUUV) performance results [A]. Proc of 11 th Int Sympsium on Unmanned Untethered Submerisble Technology [C]. [s.l. ] : [s. n. ], 1999:360-369.
  • 8MOJARRAD M, SHAHINPOOR M. Biomimetic robotic propulsion using polymeric artificial muscles [A]. Proc 1997 IEEE Int Conf on Robotics and Automation [C]. New York: IEEE Press, 1997:2152 - 2157.
  • 9AYERS J, DAVIS J, RUDOLPH A. Neurotechnology for Biomimetic Robots [M]. Cambridge, MA:MIT press,2002.
  • 10REDINIOTIS O, LAGOUDAS D, GARNER L, et al. Development of a shape memory alloy actuated underwater biomimetic vehicle[J]. J of Smart Materials and Structures, 1999,9(5) :673 - 683.

共引文献73

同被引文献141

引证文献21

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部