期刊文献+

水文模型中不同目标函数的影响分析比较 被引量:5

Effects of Objective Functions on Performance of Hydrological Models
下载PDF
导出
摘要 在水文模型中,目标函数的选择对参数率定至关重要,不同的目标函数可以得到不同的模拟结果。本文以三水源新安江模型为例,采用SCE-UA算法,选定三个不同的目标函数(平方均方误,对数均方误和平方根均方误)最小为目标函数分别进行参数优化,比较其优化结果在高、低水期的精度,最后分析不同目标函数对模拟结果的影响。研究发现:以平方均方误为目标函数的时候,高水期的模拟效果较好;以对数均方误为目标函数的时候,低水期的模拟效果较好;以平方根均方误为目标函数的时候,在整体上的模拟效果较好。 Selection of an objective function is of great significance for the calibration of rainfall-runoff models. Different objective functions could cause different simulated results. This paper has used Xinanjiang model and SCE-UA algorithm, and chosen three different objective functions: mean squared error of square transformed, mean squared error of logarithmic transformed and mean squared error of square root transformed, to calibrate and simulate the observed hydrologic processes. The precision of the simulat- ed results in the periods of high-flow and low-flow are compared. The effects of different objective functions on the performance of hydrological models have been analyzed: MSSE puts more emphasis on high-flow simulations, MLSE on low-flow simulations and MSRSE gives an intermediate picture of the overall hydrograph fit.
出处 《水文》 CSCD 北大核心 2009年第3期24-27,共4页 Journal of China Hydrology
基金 国家自然科学基金重点项目(40730632) 教育部新世纪优秀人才支持计划(NCET-05-0624) 霍英东青年教师基金(101077)
关键词 新安江模型 SCE—UA算法 目标函数 Xinanjiang hydrological model shuffled complex evolution algorithm objective function
  • 相关文献

参考文献8

  • 1Diskin M H,E Simon.A procedure for the selection of objective functions for hydrologic simulation models[J].Journal of Hydrology,1977,34(1-2):129-149.
  • 2Oudin L,Andreassian V,Mathevel T,et al.Dynamic averaging of rainfall-nmoff model simulation from complementary model parameterizations[J].Water Resources Research,2006,42(7):W07410,doi:10.1029/2005WR004636.
  • 3De Vos,N.J.,Bienqes,T.H.M.Multi-objective performance comparison of an artificial neural network and a conceptual rainfallmnoff model[J].Hydrological Science Journal,2007,52(3):397-413.
  • 4张洪刚,郭生练,刘攀,彭定志.概念性水文模型多目标参数自动优选方法研究[J].水文,2002,22(1):12-16. 被引量:40
  • 5赵人俊 王佩兰.新安江模型参数的分析.水文,1988,18(6):2-8.
  • 6李致家,周轶,哈布.哈其.新安江模型参数全局优化研究[J].河海大学学报(自然科学版),2004,32(4):376-379. 被引量:35
  • 7王文杰,安莉娜.数学优化方法在新安江模型参数率定中的应用分析[J].华北水利水电学院学报,2004,25(2):10-13. 被引量:5
  • 8Legates,D.R.,McCabe Jr.,GJ.Evaluating the use of "goodnessof-fit"measures in hydrologic and hydro-climatic model validation[J].Water Resources Research,1999,35:233-241.

二级参考文献11

  • 1谭炳卿.水文模型参数自动优选方法的比较分析[J].水文,1996,15(5):8-14. 被引量:28
  • 2SL250-2000.水文情报预报规范[S].[S].,..
  • 3Z米凯利维茨 周家驹(译).演化程序——遗传算法和数据编码的结合[M].北京:科学出版社,2000..
  • 4DUAN Q,SOROOSHIAN S,GUPTA V K. Effective and efficient global optimization for conceptual rainfall-runoff models[J]. Water Resource Research,1992,28(4):1015-1031.
  • 5DUAN Q,SOROOSHIAN S,GUPTA V K. Optimal use of SCE-UA global optimization method for calibrating watershed models[J].Journal of Hydrology,1994,158(1):265-284.
  • 6ZHAO R J. The Xinanjiang Model applied in China[J].Journal of Hydrology,1992,135(4):371-381.
  • 7ROSENBROCK H H.An automatic method of finding the greatest or least value of a function[J].Computer Journal,1960,3:175-184.
  • 8陈宝林.最优化理论与算法[M].清华大学出版社,2002..
  • 9葛守西.现代洪水预报技术[M].北京:中国水利水电出版社,2002..
  • 10赵仁俊.流域水文模拟[M].北京:中国水利水电出版社,1984..

共引文献116

同被引文献40

  • 1刘金涛,冯杰,张佳宝.分布式水文模型在流域水资源开发利用中的应用研究进展[J].中国农村水利水电,2007(2):142-144. 被引量:6
  • 2LI Zhijia, KAN Guangyuan, YAO Cheng, et al. An improved neural network model and its application in hydrological simulation [ J]. Journal of Hydrologic Engineering,DOI: 10. 1061/(ASCE)HE. 1943-5584. 0000958.
  • 3ZHANG Huilan, WANG Yujie, WANG Yunqi, et al. The effect of watershed scale on HEC-HMS calibrated parameters : a case study in the Clear Creek watershed in Iowa, U. S. [ J ]. Hydrology and Earth System Sciences,2013,17 (7) : 2735-2745.
  • 4AOUISSI J, BENABDALLAH S, CHABAANE Z L, et al. Sensitivity analysis of SWAT model to the spatial rainfall distribution and watershed subdivision in streamflow simulations in the Mediterranean context: a case study in the Joumine watershed. Tunisia[ C]//IEEE. Modeling, Simulation and Applied Optimization (ICMSAO): 2013 5th International Conference. Washington, D. C. : IEEE Computer Society,2013: 1-6.
  • 5TRIPATHE M P, RAGHUWANSHI N S, RAO G P. Effect of watershed subdivision on simulation of water balance components [J]. Hydrological Processes, 2006, 20(5): 1137-1156.
  • 6KUMAR S, MERWADE V. Impact of watershed subdivision and soil data resolution on SWAT model calibration and parameter uncertainty [ J ]. Journal of the American Water Resources Association, 2009, 45 (5) : 1179-1196.
  • 7赵人俊.流域水文模拟新安江模型与陕北模型[M].北京:水利电力出版社,1984.
  • 8BARATI R. Parameter estimation of nonlinear Muskingum models using Nelder-Mead Simplex algorithm [ J ]. Journal of Hydrologic Engineering, 2011, 16 ( 11 ) : 946-954.
  • 9LI Zhijia, XIN Penglei, TANG Jiahui. Study of the Xinanjiang model parameter calibration [ J ]. Journal of Hydrologic Engineering,2013,18 ( 11 ) : 1513-1521.
  • 10DUAN Q, SOROOSHIAN S, GUPTA V K. Optimal use of the SCE-UA global optimization method for calibrating watershed models[J]. Journal of Hydrology, 1994, 158(3) : 265-284.

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部