期刊文献+

铣削刀具破损检测的第二代小波变换原理 被引量:6

原文传递
导出
摘要 指出非平稳信号处理领域中第二代小波变换的本质是动态信号与基函数进行内积变换的数学原理,即通过信号与基函数的尺度函数和小波函数的内积运算,得到信号的分解与重构.利用第二代小波基函数振荡衰减和紧支性质,分析数控机床铣削加工过程中的声发射信号,有效地提取并识别出立铣刀破损状态特征以及对工件表面加工质量的影响,为故障诊断、误差溯源、质量控制提供科学依据.
出处 《中国科学(E辑)》 CSCD 北大核心 2009年第6期1174-1184,共11页 Science in China(Series E)
基金 国家自然科学基金(批准号:50335030) 国家重点基础研究发展计划("973"计划)(批准号:2005CB724100)资助项目
  • 相关文献

参考文献26

  • 1Rehorn A G, JiangJ, Orban P E. State-of-the-art methods and results in tool condition monitoring: A review. Int J Adv Manuf Technol, 2005, 26(7-8): 693-710
  • 2Prickett P W, Johns C. An overview of approaches to end milling tool monitoring. IntJ Mach Tools Manuf, 1999, 39(1): 105 -122
  • 3Moon J D, Kim B S, Lee S H. Development of the active balancing device for high-speed spindle system using influence coefficients. Int J Mach Tools Manuf, 2006, 46(9): 978-87
  • 4Zhang L, Gao R X, Lee K B. Spindle health diagnosis based on analytic wavelet enveloping. IEEE Instrum Meas, 2006, 55(5): 1850-1858
  • 5Ding Y, Shi J J, Ceglarek D. Diagnosability analysis of multi-station manufacturing processes. J Dyn Syst Meas Control Trans ASME,2002, 124(1): 1-13
  • 6Huang Q, Shi J J. Variation transmission analysis and diagnosis of multi-operational machining processes, IIE Trans, 2004, 36(9): 807-815
  • 7Wang H, Huang Q, Katz R. Multi-operational machining processes modeling for sequential root cause identification and measurement reduction. J Manuf Sci Eng Trans ASME, 2005, 127(3): 512-521
  • 8洪迈生,苏恒,李自军,魏元雷.数控机床的运动精度诊断──评述与对策[J].机械工程学报,2002,38(2):90-94. 被引量:30
  • 9Liang S Y, Hecker R L, Landers R G. Machining process monitoring and control. J Manuf Sci Eng Trans ASME, 2004, 126(2): 297-310
  • 10Tansel I N, McLaughlin C. Detection of tool breakage in milling operations. I: The time series analysis approach. Int J Mach Tools Manuf, 1993, 33(4): 531-544

二级参考文献16

  • 1果忠祥,徐享钧.多维定位误差的CAEC建模与实验研究[J].上海机械学院学报,1989,11(3):10-16. 被引量:1
  • 2杨力华,戴道清,黄文良等译.信号处理的小波导引[M].(Mallat S.A wavelet tour of signal processing.Second Edition,1999).北京:机械工业出版社,2002.
  • 3Zhang L, Gao R X, Lee K B. Spindle health diagnosis based on analytic wavelet enveloping [J]. IEEE Transactions on Instrumentation and Measurement,2006, 55(5): 1 850-1 858.
  • 4Sanz J, Perera R, Huerta C. Fault diagnosis of rotating machinery based on auto-associative neural networks and wavelet transforms[J]. Journal of Sound and Vibration, 2007, 302(4-5): 981--999.
  • 5Peng Z K, Chu F L, Tse P W. Singularity analysis of the vibration signals by means of wavelet modulus maximal method[J]. Mechanical Systems and Signal Processing, 2007, 21(2):780--794.
  • 6Sweldens W. The lifting scheme: A construction of second generation wavelet constructions[J]. SIAM J. Math. Anal. 1997, 29(2):511--546.
  • 7Geronimo J S, Hardin D P, Massopust P R. Fractal function and wavelet expansions based on several scaling functions[J]. Journal of Approximation Theory, 1994,78:373--401.
  • 8Strela V, Walden A T. Orthogonal and biorthogonal multiwavelets for signal denoising and image compression[J]. Proc SPIE, 1998, 3 391: 96--107.
  • 9Vasily Strela, Peter Niels Heller, Gilbert Strang, et al. The application of multiwavelet filterbanks to image processing[J]. IEEE Transactions on Image Processing, 1999, 8: 548--563.
  • 10Khadem S E, Rezaee M. Development of vibration signature analysis using multiwavelet systems [J]. Journal of Sound and Vibration, 2003, 261: 613-- 633.

共引文献55

同被引文献53

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部