摘要
钢筋混凝土矩形贮液结构广泛应用于给水排水、污水处理、石油化工、铁路等各种工业企业,主要用于贮存清水、污水、石油和化学液体等。在这类结构的抗震设计中,液动压力是一项主要的地震作用。该文假定贮液结构内的液体是理想、无旋和不可压缩的,并忽略表面重力波的影响,采用无晃动机制的矩形贮液结构液-固耦合振动模型,针对带有弹性壁板的双向壁板式钢筋混凝土矩形贮液结构,将液体运动的速度势函数表示为壁板侧向变形和刚体运动速度势函数的叠加,推导了液动压力计算公式。为便于工程应用,结合现有文献并编制MATLAB程序,给出了液动压力计算的简化公式及其计算系数用表,从而为以后该类结构的设计计算提供了理论依据。
Reinforced concrete (RC) rectangular liquid-storage tanks, which are broadly used to reserve rinsing, sewerage, petroleum and chemical liquid, etc., are mainly applied to such corporations as water-supply and drainage, sewerage-disposal, petroleum and chemical industries, railway and so on. In the seismic response analysis of these structures, dynamic fluid pressure is one of the earthquake actions with extraordinary importance.In this paper, supposing that the liquid in liquid-storage tank is ideal, no revolved and no compressible, and ignoring the influence of surface gravity wave, and adopting the liquid-structure interaction model of no sloshing rectangular liquid-storage tanks, and aiming at the bidirection-wall RC rectangle liquid-storage tanks with elastic walls, the velocity potential fimction of liquid movement is expressed as overlapping of the velocity potential functions between the side direction deformation and rigid body movement, and so the dynamic fluid pressure calculation formulas are derived. For the convenience of engineering application, considering the literatures in existence and writing MATLAB programs, the simplified calculating formulas of dynamic fluid pressure under the action of horizontal earthquake actions are acquired, and the coefficients of dynamic fluid pressure are tabulated, and so the theory calculation base is provided for the subsequent engineering design about these structures.
出处
《工程力学》
EI
CSCD
北大核心
2009年第6期82-88,共7页
Engineering Mechanics
基金
国家自然科学基金项目(50778087)
兰州理工大学博士基金项目(SB04200802)
兰州理工大学优秀青年教师培养计划项目(Q200809)
甘肃省建设厅科技攻关项目(JK2008-28)
甘肃省教育厅科技攻关项目(0803-10)
甘肃省自然科学基金项目(3ZS061-B25-08)
关键词
钢筋混凝土
矩形贮液结构
弹性双向壁板
微幅晃动
液-固耦合
液动压力
reinforced concrete
rectangle liquid-storage tanks
elastic bidirection-wall
micro sloshing
liquid-structure interaction
dynamic fluid pressure