期刊文献+

一种基于运动估计的3D视频降噪算法 被引量:4

3D Video Noise Reduction Based on Motion Estimation
下载PDF
导出
摘要 在视频图像降噪中,时域滤波比空域滤波在保护边缘和细节,提高PSNR方面更具有优势。根据此原理,提出了一种基于运动估计的3D降噪算法。该3D降噪算法结合了时域滤波和空域滤波。在时域上,基于运动估计在当前帧的前一帧和后一帧中同时搜索匹配块。对搜索到的匹配块进行运动强度检测,如果运动强度较小,就进行时域滤波,如果运动强度过大,就为对当前块进行空域滤波。另外,设计了噪声标准差估计单元,能够根据噪声标准差自动调整运动强度检测阈值,准确判断块的运动强度。同时,估计出的噪声标准差也用作空域滤波器的参数。 Temporal filter has the advantage over spatial filter in the protection of edge and detail, as well as the enhancement of PSNR. A 3D video noise reduction Based on motion estimation is proposed. This 3D filter for video noise reduction combines spatial and temporal filter together. Matching block of current block is searched in the former frame and next frame based on motion estimation. Then, the motion between current block and matching block is detected. If the motion is smaller than the threshold, a temporal filter is used, otherwise, a spatial filter is used rather than temporal filter. Besides, a noise standard deviation detecting unit is used to get the threshold of motion detect and the parameter of spatial filter.
出处 《计算机与数字工程》 2009年第6期122-124,148,共4页 Computer & Digital Engineering
关键词 视频图像降噪 运动估计 时域 空域 video noise reduction, motion estimation, temporal, spatial
  • 相关文献

参考文献8

  • 1James C. Brailean, Aggelos K. Katsaggelos, Rechard P. Kleihorst etal. Noise Reduction Filters for Dynamic Image Sequences: A Review [J]. Proceedings of The IEEE, 1995,83 : 1272-1292.
  • 2Sitaram Bhagavathy and Joan Llach. Adaptive Spario-Temporal Video Noise Filtering for High Quality Application[C]. IEEE International Conference on, 1:1--761 -- 1--764, 2007,4.
  • 3Dubois, E. Sabri, S. Noise Reduction in Image Sequences Using Motion-Compensated Temporal Filtering [J]. Communications, IEEE Transactions on. 1984, 32: 826--831.
  • 4Gupta, N. Swamy, M. N. S. Plotkin, E. L Low- complexity video noise reduction in wavelet domain[C]. Multimedia Signal Processing, 2004 IEEE 6th Workshop on. 2004,9:239-242.
  • 5冈萨雷斯.数字图像处理[M].北京:电子工业出版社,2003..
  • 6靳明,宋建中.一种自适应的图像双边滤波方法[J].光电工程,2004,31(7):65-68. 被引量:40
  • 7Ming Zhang, Bahadir K. Gunturk. Multiresolution Bilateral Filtering tor Image Denoising[J]. IEEE TRANS- ACTIONS ON IMAGE PROCESSING, 2008,17 (12).
  • 8李岩,乔彦峰,高丰端,高岩,孙志远.一种基于运动补偿的时域自适应视频降噪算法[J].电子器件,2007,30(5):1666-1669. 被引量:7

二级参考文献13

  • 1[1]Vasconcelos N.Pre and Post-Filtering for Low bit-Rate Video Coding[J].IEEE Transaction on Image Processing.1997,1:291-294.
  • 2[2]Dekeyser F.Spatial-Temporal Wiener Filtering of Image Sequences Using a Parametric Model[J].ICIP.2000,1:1586-1589.
  • 3[3]Giaconni P R.Motion-Compensated Multi-Channel Noise Reduction of Colour Film Sequence[J].SPIE.1999,8:246-254.
  • 4[4]Boo K J.A Motion-Compensated Spatial-Temporal Filter for Image Sequence with Signal Dependent Noise[J].IEEE Transaction on Circuits and Systems for Video Technology.1998,8:287-298.
  • 5TOMASI C, MANDUCHI R. Bilateral filtering for gray and color images[A]. Proceedings of the sixth international conference on computer vision [C]. Washington D C: IEEE Computer Society, 1998. 839-846.
  • 6BARASH D. Bilateral filtering and anisotropic diffusion: towards a unified viewpoint [EB/OL]. http: // www.hpl.hp.com/techreports/2000/HPL-2000-18R1.pdf. 2000-08-14.
  • 7ELAD M. On the origin of the bilateral filter and ways to improve it [J]. IEEE Transactions on Image Processing, 2002, 11(10): 1141-1151.
  • 8BARASH D. A fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2002, 24(6): 844-847.
  • 9SAINT MARC P, CHEN J S, MEDIONI G. Adaptive smoothing: a general tool for early vision [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1991, 13(6): 514-529.
  • 10PERONA P, MACLIK J. Scale-space and edge detection using anisotropic diffusion [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1990, 12(7): 629-639.

共引文献179

同被引文献38

  • 1LU Q B, I.U Z B, TA() X Q, et al. A new Non-local video denoising scheme using low-rank representation and total variation regularization [J]. International Symposium on Circuits and Systems (ISCAS), 2014: 2724-2727.
  • 2CHEN G Y, BUI T D, KRZYZAK A, et al. Adaptive video denoising using block matching 3-D filtering[J]. IEEE Canadian ('onfcrerlce on Electrical >. Computer Engineering (C('ECE), 2012(25):1-4.
  • 3REN J, ZHU() Y, 1.1U J Y, et al. Illumination invariant Non-local mens based video denoising[J]. IEEE International Conference on Image Processing (ICIP), 2012(19) :1185-1188.
  • 4GHAZAL M, SU C, AMER A. Motion and region detection for effective recursive temporal noise reduction [ C ]. Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on. IEEE, 2007, 1.. 1-677-I-680.
  • 5LU J, ZOU Y, YE Z. Enhanced fractal-wavelet im- age denoising [C]. ISECS International Colloquium on Computing, Communication, Control, and Management, 2008. CCCM'08. IEEE, 2008, 1: 115-119.
  • 6WALKER J S, CHEN Y J. Image denoising using tr- eebased wavelet subband correlations and shrinkage [J]. Optical Engineering, 2000, 39(11) : 2900-2908.
  • 7DAI J, AU O C, PANG C, et al. Video denoising based on transform domain minimum mean square error[C]. 2011 18th IEEE International Conference on Image Processing (ICIP). IEEE, 2011: 2573-2576.
  • 8BALSTER E J, ZHENG Y F, EWING R L. Combi- ned spatial and temporal domain wavelet shrinkage algorithm for video denoising[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2006, 16(2) .. 220-230.
  • 9YIN W Y, ZHAO H W, LI G P. et al. A block based temporal spatial Non-local mean algorithm for video denoising with multiple resolution [ J ].International conference on Signal Processing and communication systems(ICSPCS), 2012(6) : 1-4.
  • 10BUADES A, COLL B, MOREL J M. A non-local algorithm for image denoising[C]. CVPR 2005. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. IEEE, 2005(2).. 60-65.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部