期刊文献+

基于四叉树切削网格的N-S方程求解方法

原文传递
导出
摘要 以四叉树非结构化网格为基础,提出了背景区域采用正方形四叉树网格、边界区域采用切削网格的一种可以表达复杂几何形状的网格生成方法,该网格具有生成过程简单,正交性好等优点.在这种网格的基础上,采用非结构网格有限体积法进行离散得到了多种形状切削网格并存时Navier-Stokes(N-S)方程的求解算法,并以顶盖驱动斜方腔流和方腔内热圆柱自然对流为例,应用上述算法实现了网格生成和流动数值模拟,与基准解进行了比较,一致性较好.计算结果表明这种切削网格方法及其N-S方程求解方法具有可靠性和应用前景.
出处 《中国科学(G辑)》 CSCD 北大核心 2009年第6期887-894,共8页
基金 日本理化学研究所IPA计划 日本JSPS科学研究基金(基础研究C)(编号:20560175) 国家自然科学基金(批准号:10872159,40675011)资助项目
  • 相关文献

参考文献17

  • 1Quirk J J. An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex 2-Dimensional bodies. Comput Fluids, 1994, 23(1): 125-142
  • 2Zeeuw D D, Powell K G. An adaptively refined Cartesian mesh solver for the Euler equations. J Comput Phys, 1993, 104(1): 56-68
  • 3Coirier W J, Powell K G. An accuracy assessment of Cartesian-mesh approaches for the Euler equations. J Comput Phys, 1995, 117(1): 121-131
  • 4Young D P, Melvin R G, Bieterman M B, et al. A locally refined rectangular grid finite element method: application to computational fluid dynamics and computational physics. J Comput Phys, 1991,92(1): 1-66
  • 5Popinet S. Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries. J Comput Phys, 2003, 190(2): 572-600
  • 6Wang Z J. A quadtree based adaptive Cartesian/quad grid flow solver for navier-stokes equations. Comput Fluids, 1998, 27(4): 529-549
  • 7Lei K B, Iwata M, Noda S, et al. Simulation for viscous incompressible flows by voxel cartesian grid with cut cells (Numerical analysis of arbitrary, flow field using V-CAD data directly). Trans Japan Soc Mech Eng Ser B, 2003, 69(6): 1333-1340
  • 8Ham F E, Lien F S, Strong A B. A Cartesian grid method with transient anisotropic adaptation. J Comput Phys, 2002, 179(2): 469-494
  • 9Chung M H. Cartesian cut cell approach for simulating incompressible flows with rigid bodies of arbitrary shape. Comput Fluids, 2006, 35(6): 607-623
  • 10杜平安.有限元网格划分的基本原则[J].机械设计与制造,2000(1):34-36. 被引量:347

二级参考文献15

  • 1张芩,郭薇.基于四叉树的邻域查询技术[J].系统仿真学报,2001,13(S2):48-50. 被引量:8
  • 2魏红宁,周本宽.适于自适应网格加密的数据结构和算法[J].西南交通大学学报,1996,31(6):652-658. 被引量:3
  • 3许尚贤.机械结构中的有限元法[M].北京:高等教育出版社,1992..
  • 4Lai Y G. An unstructured grid method for a pressurebased flow and heat transfer solver[J]. Numerical Heat Transfer: Part B, 1997,32(3) : 267-281.
  • 5Kobayashi M, Pereira M C, Pereira J C F. A secondorder upwind least-squares scheme for incompressible flows on unstructured hybrid grids [J]. Numerical Heat Transfer: Part B, 1998,34(1) :39-60.
  • 6Jasak H, Weller H G, Gosman A D. High resolution NVD differencing scheme for arbitrarily unstructured meshes[J]. Int J for Numerical Methods in Fluids,1999,31(2) : 431-449.
  • 7Wang Z J. A quadtree-based adaptive cartesian/quad grid flow solver for Navier-Stokes equations[J]. Computers & Fluids, 1998,27(4):529-549.
  • 8Rhie C M, Chow W L. Numerical study of the turbulent flow past an airfoil with trailing edge separation[J]. AIAA J, 1983,21(11):1 526-1 532.
  • 9Date A W. Complete pressure correction algorithm for solution of incompressible Navier-Stokes equations on nonstaggered grid[J]. Numerical Heat Transfer: PartB, 1996,29(4) : 441-458.
  • 10Ferziger J, Peri'c M. Computational methods for fluid dynamics[M]. Berlin: Springer-Verlag, 1996.

共引文献354

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部