期刊文献+

基于椭圆曲线的三方比特承诺 被引量:3

Three-Party Bit Commitment Based on Elliptic Curve
下载PDF
导出
摘要 比特承诺是安全多方计算中最重要的基础协议之一,对构建更复杂的多方协议起着重要作用。该文提出了三方比特承诺模型,在该模型中,由两个证明者共同向一个验证者作出承诺。给出了基于椭圆曲线的三方比特承诺方案,经证明,尽管该方案完全基于经典计算环境,但是并不需要对协议参与方的计算能力作任何限制性假设,具有无条件安全性且对信道窃听免疫。该方案同时可以推广到比特串承诺协议。 Bit commitment is a fundamental primitive in secure multi-party computation. It plays an important role in constructions of more complicated multi-party protocols. A new model of bit commitment named three-party bit commitment is proposed in this paper, in which two provers jointly commit a bit to a verifier. The protocol of three-party bit commitment based on elliptic curve cryptography is also given. The scheme is in purely classical means, without restricted assumptions of the computing power imposed on any participant. Moreover, the scheme is proven to be of unconditional security and be immune to channel eavesdropping. The protocol can also be modified easily to realize bit string commitment scheme.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第5期1049-1053,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金项目(60773032,60703071) 教育部博士点基金(2006CB303006)资助课题
关键词 密码学 比特承诺 三方模型 椭圆曲线 无条件绑定 无条件保密 Cryptography Bit commitment (BC) Three-party model Elliptic curve (EC) Unconditionally binding Unconditionally concealing
  • 相关文献

参考文献15

  • 1Blum M. Coin flipping by telephone. Proc IEEE Sprint COMPCOM. Las Vegas, 1982: 133-137.
  • 2Goldwasser S, Micali S, and Rivest R L. A Digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal of Computing, 1998, 17(2): 281-308.
  • 3Damgard I and Fujiso.ki E. An integer commitment scheme based on groups with hidden order. Advances in Cryptology - ASIACRYPT, New Zealand, 2002: 125-142.
  • 4Haitner I and Reingold O. Statistically-hiding commitment from any one-way function. Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, San Diego, California, USA, 2007: 1-10.
  • 5Naor M. Bit commitment using pseudorandomness. Journal of Cryptology, 1991, 2(2): 151-158.
  • 6Impagliazzo R and Naor M. Efficient cryptographic schemes provably as secure as subset sum. Journal of Cryptology, 1996 9(4): 199-216.
  • 7Lo H K and Chau H F. Is quantum bit commitment really possible? Phys. Rev. Lett., 1997, 78(17): 3410-3413.
  • 8Mayers D. Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett., 1997, 78(17): 3414-3417.
  • 9Lo H K and Chau H F. Making an empty promise with a quantum computer. Fortschritte Der Physik, Berlin, Wiley- VCH, 1998, 46(4-5): 507-519.
  • 10Lo H K and Chau H F. Why quantum bit commitment and ideal quantum coin tossing are impossible. Physica D, 1998, 120(1-2): 177-187.

同被引文献28

  • 1姚高远,姜秀华,刘思倩.一种基于MPEG-2视频流的有效性测量方法[J].电视技术,2009,33(S2):232-234. 被引量:1
  • 2邵立松,窦文华.自相似网络通信量模型研究综述[J].电子与信息学报,2005,27(10):1671-1676. 被引量:10
  • 3苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:387
  • 4秦运龙 孙广玲 张新鹏.利用运动矢量进行视频篡改检测.计算机研究与发展,2009,46:227-233.
  • 5Blum M. Coin Flipping by Telephone Protocol for Solving Impossible Problems[C]//Proceedings of ACM SIGACT News. New York, USA: ACM Press, 1983: 23-27.
  • 6Blum M, Feldman P, Micali S. Non-interactive Zeroknowledge and Its Applications[C]//Proceedings of the 20th Annum ACM Symposium on Theory of Computing. New York, USA: [s. n.], 1988: 103-112.
  • 7Michael B, Nathan L. Collective Coin Flipping, Robust Voting Schemes and Minima of Banzhaf Values[C]//Proc. of the 26th Annual Symposium on Foundations of Computer Science. New York, USA: [s. n.], 1985: 408- 416.
  • 8Pallier R Public-Key Cryptosystems Based on Composite Degree Residue Classes[C]//Proceedings of EURO- CRYPT'99. Prague, Czech Republic: [s. n.], 1999: 223-238.
  • 9Nisan N, Rosen A. Algorithmic Mechanism Design[C]// Proc. of the 31st Annual ACM Symposium on Theory of Computing. New York, USA: ACM Press, 1999:129-140.
  • 10Feige U, Tennenholtz M. Mechanism Design with Uncertain Inputs(to Err is Human, to Forgive Divine)[EB/OL]. [2012-04-28]. http://arxiv.org/pdf/1103.2520.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部