期刊文献+

通道参数对MPCA传播特性的影响分析

Analysis of Channel Parameter on MPCA Propagation Properties
下载PDF
导出
摘要 该文针对现有高功率微波武器辐射天线的不足,提出了将磁化等离子体通道用作电磁脉冲辐射天线的思想——磁化等离子体通道天线(MPCA),分析了MPCA周围为有耗气体媒质时MPCA所传播的一般模式。简单阐述了MPCA的具体实现方法,根据MPCA的工作原理,建立了MPCA的几何模型,导出了广义柱坐标系下磁化等离子体中纵向场所满足的波动方程及纵-横的关系,利用边界条件导出了MPCA严格的特征方程。重点讨论了MPCA的传播常数随等离子体通道参数(等离子体频率和通道半径)的变化。结果表明,强磁场时等离子体频率对天线衰减常数影响增大,且有一极值出现。 In order to cover the shortage of the current antenna for high power microwave weapon, the idea of a magnetized plasma channel used as antenna for radiating electromagnetic pulse is proposed. The normal modes of Magnetized Plasma Channel Antenna (MPCA) in lossy gas are analyzed. The concrete realization method of MPCA is simply described. The geometric-model of MPCA is created based on the operating principle of the antenna. The wave equations for the longitudinal electromagnetic fields and the relations between the transverse electromagnetic fields and longitudinal ones of magnetized plasma in generalized cylindrical coordinate are given. The strict characteristic equation of MPCA is deduced by using the boundary conditions of electromagnetic fields. Discussion is stressed on the variations of propagation constants with plasma channel parameters (plasma frequency and channel radius). The analysis shows that the influence of plasma frequency on the attenuation constant of MPCA is increasing, and an extremum point is appeared.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第5期1256-1259,共4页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60671057)资助课题
关键词 磁化等离子体通道天线 特征方程 传播特性 MPCA (Magnetized Plasma Channel Antenna) Characteristic equation Propagation properties
  • 相关文献

参考文献15

  • 1Tret'yakov D V. Spark plasma antenna [J]. Journal of Communications Technology and Electronics, 2008, 53(7): 823-828.
  • 2Fathy A E, Rosen A, and Owen H S, et al.. Silicon-based reconfigurable antennas-concepts, analysis, implementation, and feasibility [J]. IEEE Transactions on Microwave Theory and Techniques, 2003.51(6): 1650-1661.
  • 3Ginzburg N S, Korovin S D, and Pegel I V, et al.. Production v of ultra-short high-power microwave pulses in C erenkov backward-wave systems [J]. Laser Physics, 2006, 16(1): 79-88.
  • 4邢召伟,周东方,邵颖,曹金坤,邹伟.高功率微波在抗击巡航导弹中的应用[J].信息工程大学学报,2006,7(1):28-30. 被引量:24
  • 5Lu Xun. Research on high power microwave pulse in the air breakdown [C]. 6th international symposium on antennas, propagation and EM theory proceedings, Beijing, 2003: 537-540.
  • 6Yang J H, Niu Z X, and Zhou D F, et al.. The temporal disperse character in the nonlinear propagation of high power microwave[C]. Asia-Pacific Radio Science Conference, Qingdao, 2004: 459-461.
  • 7Guo Chen, Zhang An-xue, and Wu Hui. A High-power reflector impulse antenna with dual-TEM source [J]. International Journal of Infrared and Millimeter Waves, 2008, 29(7): 832-838.
  • 8Gubanov V P, Korovin S D, and Pegel I V, et al.. Generation of high-power ultrawideband electromagnetic pulses in a system with a coaxial TEM horn [J]. Russian Physics Journal, 1996, 39(12): 1250-1256.
  • 9Hao Z Q, Zhang J, and Li Y T, et al.. Prolongation of the fluorescence lifetime of plasma channels in air induced by femtosecond laser pulses [J]. Applied Physics B, 2005, 80(3): 627-630.
  • 10Fu Wenjie and Yah Yang. Harmonic generation of high-power microwave in plasma filled waveguide [J]. International Journal of Infrared and Millimeter Waves, 2008 29(10): 43-50.

二级参考文献15

  • 1Liu Song Zhong Shuangying Liu Shaobin.Piecewise linear recursive convolution FDTD method for magnetized plasmas[J].Journal of Systems Engineering and Electronics,2006,17(2):290-295. 被引量:4
  • 2林竞羽,周东方,侯德亭,等.HPM技术发展概述[C]//全国第五届高功率微波学术研讨会论文集,2002:735-739.
  • 3庞志兵.防空兵抗击巡航导弹预警问题研究[R],国防科技报告,2004.
  • 4Luebbers R, Hunsberger F P, Kunz K S, et al. A frequency-dependent finite-difference time-domain formulation for dispersive materials[J].IEEE Transactions on Electromagnetic Compatibility, 1990, 32 (3) : 222 - 227
  • 5Luebbers R J, Hunsberger F P, Kunz K S. A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma [ J]. IEEE Transactions on Antennas and Propagation, 1991, 39( 1 ) : 29 -34
  • 6Hunsberger F, Luebbers R, Kunz K. Finite-difference time-domain analysis of gyrotropic media-I: magnetized plasma[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(12) : 1489-1495
  • 7Kelley D F, Luebbers R J. Piecewise linear recursive convolution for dispersive media using FDTD [ J ]. IEEE Transactions on Antennas and Propagation, 1996, 44 (6) : 792 - 797
  • 8Nickisch L J, Franke P M. Finite-difference time-domain solution of Maxwell's equations for the dispersive ionosphere[ J ]. IEEE Antenna and Propagation Magazine, 1992, 34(5) : 33 -39
  • 9Sullivan D M. Frequency-dependent FDTD methods using Z transforms [ J ]. IEEE Transactions on Antennas and Propagation, 1992, 40(10) : 1223 - 1230
  • 10Chen Q, Katsurai M, Aoyagi P H. An FDTD formulation for dispersive media using a current density [ J]. IEEE Transactions on Antennas and Propagation, 1998, 46 (10) : 1739 - 1746

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部