期刊文献+

一种基于度量层信息的基本信任分配构造方法 被引量:2

A Basic Belief Assignment Construction Method Based on the Information of Measurement Level
下载PDF
导出
摘要 在决策层融合目标识别中,Dempster组合规则是一种常用的融合算子,它的有效应用取决于相应基本信任分配的合理建立。该文针对决策层融合目标识别问题中子源传感器输出的度量层信息,分析了基本信任分配的构造准则,并提出了一种基于参考向量与度量层信息之间相似度的基本信任分配构造方法。在仿真数据与空中雷达目标实测数据上的实验结果表明,该方法构造的基本信任分配能够有效地通过Dempster组合规则进行融合。 Dempster rule of combination is a useful fusion operator for decision level recognition fusion. The effective application of this rule depends on the rational construction of corresponding basic belief assignment. Considering the measurement information from each sensor in decision level recognition fusion, this paper suggests a group of principles for constructing basic belief assignment, and then presents a strategy of basic belief assignment construction based on the similarity degree between referential vector and the measurement information. The experiments on artificial data and real data of radar aerial target demonstrate the basic belief assignments constructed by the presented method can be fused by Dempster rule of combination effectively.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第6期1345-1349,共5页 Journal of Electronics & Information Technology
关键词 目标识别 基本信任分配 DEMPSTER组合规则 度量层信息 Target recognition Basic belief assignment Dempster rule of combination Measurement level information
  • 相关文献

参考文献18

  • 1Dempster A. Upper and lower probabilities induced by a multivalued mapping [J]. Annals of Math. Statistics, 1967, 38: 325-339.
  • 2Sharer G. A Mathematical Theory of Evidence [M]. Princeton: Princeton Univ. Press, 1976.
  • 3Delmotte F and Smets P. Target identification based on the transferable belief model interpretation of dempster-shafer model [J]. IEEE Trans. on SMC, Part A: Systems and Humans, 2004, 34(4): 457-471.
  • 4Xu L, Krzyzak A, and Suen C. Methods of combining multiple classifiers and their applications to handwritting recognition [J]. IEEE Trans. on SMC, 1992, 22(3): 418-434.
  • 5Guo H, Shi W, and Deng Y. Evaluating sensor reliability in classification problems based on evidence theory [J]. IEEE Trans. on System, Man and Cybernetics-PART B: Cybernetics, 2006, 36(5): 970-981.
  • 6黎湘 付耀文 景小军 庄钊文.多模导引头融合检测研究.系统工程与电子技术,2000,22(10):25-26.
  • 7Dencex T. A k-nearest neighbor classification rule based on Dempster-Shafer theory [J]. IEEE Trans. on System, Man, and Cybernetics, 1995, 25(5): 804-813.
  • 8Matsuyama T. Belief formation from observation and belief integration using virtual belief space in Dempster-Shafer probability model [C]. Proceedings of the 1994 IEEE Interational Conference on Multisensor Fusion and Integration for Intelligent Systems, Las Vegas, NV, Oct. 1994: 379-386.
  • 9Boudraa A, et al.. Dempster-Shafer's basic probability assignment based on fuzzy membership functions [J]. Electronic Letters on Computer Vision and Image Analysis, 2004, 4(1): 1-9.
  • 10Ahmed A and Deriche M. A new technique for combining multiple classifiers using the dempster-shafer theory of evidence [J]. Journal of Artificial Intelligence Reasearch, 2002 17(11): 333-361.

二级参考文献18

共引文献55

同被引文献40

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部