期刊文献+

混合粒子对优化算法在说话人识别中的应用

A Novel Shuffled Particle-pair Optimizer for Speaker Recognition
下载PDF
导出
摘要 在粒子群优化(Particle Swarm Optimization,PSO)和混合蛙跳算法(Shuffled Frog-Leaping Algorithm,SFLA)的基础上,该文提出了一种新的混合粒子对优化(Shuffled Particle-Pair Optimizer,SPPO)算法,应用于矢量量化的说话人识别。该算法将全局信息交换和局部深度搜索相结合寻求最佳的说话人码本。群体按适应值分为3个粒子对,每个粒子对由两个粒子构成,按先后顺序执行PSO算法中的速度位置更新和LBG算法以实现局部细致搜索,间隔一定的迭代次数通过SFLA混合策略实现粒子对间的信息交换,从而使群体向全局最优解靠近。实验结果表明,本算法始终稳定地取得显著优于LBG,FCM,FRLVQ-FVQ和PSO算法的说话人识别性能,较好地解决了初始码本影响的识别性能的问题,且在计算时间和收敛速度方面有相当的优势。 A novel Shuffled Particle-Pair Optimizer (SPPO) is proposed for speaker recognition based on vector quantization, which combines the advantage both in Particle Swarm Optimization (PSO) and Shuffled Frog-Leaping Algorithm (SFLA). The SPPO contains elements of local exploration and global information exchange to get global optimized speaker codebook. In this algorithm, the population is partitioned into 3 particle-pairs according to the performance, and each particle-pair consists of two particles. The particle-pairs perform simultaneously local exploration using basic operations of PSO (velocity updating and position updating) and LBG algorithm in sequence. A shufflingstrategy, in which the particles are periodically shuffled and reorganized into new particle-pairs, allows for the exchange of information between particle-pairs to move toward the global optimum. Experimental results demonstrat that the performance of this new method is much better than that of LBG, FCM, FRLVQ-FVQ, and PSO consistently with lower speaker recognition error rates, shorter computational time and higher convergence rate. The dependence of the final codebook on the selection of the initial codebook is also reduced effectively.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第6期1359-1362,共4页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60572100) 深圳大学科研启动基金(200637)资助课题
关键词 说话人识别 粒子群优化 混合蛙跳算法 矢量量化 与文本无关 Speaker recognition Particle Swarm Optimization(PSO) Shuffled Frog-Leaping Algorithm(SFLA) Vector quantization Text-independent
  • 相关文献

参考文献11

  • 1Soong F K, Rosenberg A E, and Rabiner L R, et al.. A vector quantization approach to speaker recognition[C]. International Conference on Acoustics, Speech, and Signal Processing, Tampa, 1985: 387-390.
  • 2Tran D, Wagner M, and Van Le T. A proposed decision rule for speaker recognition based on fuzzy C-Means clustering [C] 5th International Conference on Spoken Language Processing Sydney Australia, 1998: 755-758.
  • 3Xu Wen-huan, Nandi A K, and Zhang Ji-hong. Novel vector quantizer design using reinforced learning as a pre-process [J]. Signal Processing, 2005, 85(7): 1315-1333.
  • 4胡恒滔,龙建忠.基于蚁群算法的模糊C-均值聚类算法在声纹识别中的应用[J].四川大学学报(自然科学版),2007,44(3):543-547. 被引量:10
  • 5Kennedy J and Eberhart R. Particle swarm optimization [C]. Proceedings of IEEE International Conference on Neural Networks, Piscataway, 1995: 1942-1948.
  • 6Xue Li-ping, Yin Jun-xun, and Ji Zhen, et al.. A particle swarm optimization for hidden Markov model training [C]. 8th International Conference on Signal Processing, Guilin, 2006, Vol(1-4): 791-794.
  • 7薛丽萍,尹俊勋,纪震.基于粒子群优化-模糊聚类的说话人识别[J].深圳大学学报(理工版),2008,25(2):178-183. 被引量:8
  • 8纪震,廖惠连,许文焕,姜来.粒子对算法在图像矢量量化中的应用[J].电子学报,2007,35(10):1916-1920. 被引量:10
  • 9Eusuffm M and Lansey K E. Optimization of water distribution network design using shuffled frog leaping algorithm[J]. Journal of Water Resources Planning and Management, 2003, 129(3): 210-225.
  • 10Alireza R V and All H M. A hybrid multi-objective shuffled frog-leaping algorithm for a mixed-model assembly line sequencing problem [J]. Computers&Industrial Engineering, 2007, 53(1): 642-666.

二级参考文献27

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部