期刊文献+

随机射线的概率分布及其应用 被引量:2

Probability Distribution of Stochastic Rays and Its Applications
下载PDF
导出
摘要 在使用随机射线方法建模无线传播信道时,需要求解以反射次数为指标的无线电波经过若干次反射以后达到特定位置的概率分布。该文使用信息论中的最大熵原理,首先计算在Manhattan距离度量下二维和三维空间连续情形和离散情形下随机射线的概率密度函数。然后计算在Euclid距离度量下二维和三维空间连续情形下随机射线的概率密度函数,以及作随机游动的随机射线在二维空间的概率密度函数。使用城市密集传播地区的测量数据验证随机射线理论模型结果的可靠性。所得结果对于无线随机传播信道建模具有理论指导意义。 The probability distribution of radio wave that undergoes certain number of collisions at a specific spatial location should be solved. This probability is used to model radio propagation channels with the method of stochastic rays. The maximum entropy principle in information theory is utilized to calculate the corresponding probability in the current research. Under Manhattan metric, the 2-dimensional and 3-dimensional continuous probability density functions (pdfs) and discrete probability mass functions are calculated. Under Euclidean metric 2-dimensional and 3-dimensional continuous pdfs and discrete probability mass functions are also calculated, and the pdf of stochastic rays undergoing random walks is derived. The results of theoretical model based on stochastic rays are validated by experimental dada measured in dense urban propagation scenario. The results of the paper are important to the modeling of wireless stochastic propagation channels.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第6期1405-1409,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金重点项目(60432040) 国家自然科学基金(60572024) 教育部新世纪优秀人才支持计划(NCET-04-0519) 教育部博士点基金(200509230031) 江苏出入境检验检疫局科研项目(2009KJ14)资助课题
关键词 无线通信 随机过程 最大熵 随机射线 信道模型 Wireless communications Stochastic processes Maximum entropy Stochastic rays Channel models
  • 相关文献

参考文献14

  • 1Ullmo D and Baranger H U. Wireless propagation in buildings: A statistical scattering approach. IEEE Transactions on Vehicular Technology, 1999, 48(3): 947-955.
  • 2Ishimaru A. Wave Propagation and Scattering in Random Media. N J: Wiley-IEEE Press, 1999, Chap. 7.
  • 3Franceschetti G, Marano S, and Palmieri F. Propagation without wave equation, toward an urban area model. IEEE Transactions on Antennas and Propagation, 1999, 47(9): 1393-1404.
  • 4Brown M G and Viechnicki J. Stochastic ray theory for long-range sound propagation in deep ocean environments. Journal of the Acoustical Society of America, 1998, 104(4): 2090-2104.
  • 5Hu L and Zhu H. Bounded Brownian bridge model for UWB indoor multipath channel. IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technology for Wireless Communication Proceedings, Beijing, China. 2005: 1406-1409.
  • 6Molisch A F, Kuchar A, Laurila J, Hugl K, and Schmalenberger R. Geometry-based directional model for mobile radio channels - principles and implementation. European Transactions on Telecommunications, 2003, 14(4): 351-359.
  • 7扈罗全,朱洪波.随机桥方法产生相关时间序列及其应用研究[J].通信学报,2006,27(7):27-34. 被引量:6
  • 8Marano S and Franceschetti M. Ray propagation in a random lattice: A maximum entropy, anomalous diffusion process. IEEE Transactions on Antennas and Propagatation, 2005, 53(6): 1888-1896.
  • 9Cover T M and Thomas J A. Elements of Information Theory. NY: Wiley, 1991, Chap. 11.
  • 10Hu L Q, Yu H, and Chen Y. Path loss models based on stochastic rays. IET Microwave, Antennas and Propagation, 2007, 1(3): 602-608.

二级参考文献24

  • 1扈罗全,朱洪波.超宽带室内多径信道特性的最优化分析[J].通信学报,2005,26(10):143-148. 被引量:5
  • 2扈罗全,朱中华,朱洪波.超宽带室内多径信道成簇特性仿真与分析[J].南京邮电学院学报(自然科学版),2005,25(6):17-21. 被引量:6
  • 3扈罗全,朱洪波.矩阵随机过程在短程无线信道空时特性建模中的应用[J].中国电子科学研究院学报,2006,1(1):93-97. 被引量:4
  • 4KONTOROVICH V K,LYANDRES V Z.Stochastic differential equations:an approach to the generation of continuous non-Gaussian processes[J].IEEE Trans on Signal Processing,1995,43(10):2372-2385.
  • 5PRIMAK S,LYANDRES V,KAUFMAN O,et al.On the generation of correlated time series with a given probability density function[J].Signal Processing,1999,72(2):61-68.
  • 6MOLISCH A F,LAURILA J,KUCHAR A.Geometry-base stochastic model for mobile radio channels with directional component[A].Proceedings 2nd Intelligent Antenna Symposium[C].University of Surrey,1998.
  • 7MOLISCH A F,KUCHAR A,LAURILA J,et al.Geometry-based directional model for mobile radio channels-principles and implementation[J].European Transactions on Telecommunications,2003,14(4):351-359.
  • 8HOFSTETTER H,STEINBOCK G.A geometry based stochastic channel model for MIMO systems smart antennas[A].ITG Workshop[C].2004.194 -199.
  • 9KUNISCH J,PAMP J.Measurement results and modeling aspects for the UWB radio channel[A].Proc IEEE Conf Ultra Wideband Systems and Technologies[C].2002.19-24.
  • 10OPPERMANN I,HAMALAINEN M,IINATTI J.UWB theory and applications[M].John Wiley & Sons,2004.

共引文献6

同被引文献19

  • 1SURAWEERA H A, LOUIE R H Y, YONGHUI LI, et al. Two Hop Amplify-and-Forward Transmission in Mixed Rayleigh and Rician [ J ]. IEEE Commu Lett, 2009,13 (4) : 227 -229.
  • 2KARYOTIS V A, VALAGIANNOPOULOS C A. Analytic Stochastic Propagation Model for Urban Streets [ J ]. IET Microwaves,Antennas & Propagation,2010,4( 1 ) :91-98.
  • 3ULLMO D, BARANGER H U. Wireless Propagation in Buildings: a Statistical Scattering Approach [ J ]. IEEE Trans. Vehicular Technol. , 1999, 48 (3) : 947-955.
  • 4FRANCESCHETrI G, MARANO S, PALMIERI F. Propagation Without Wave Equation, Toward An Urban Area Model [ J ]. IEEE Trans. Antennas Propagat. , 1999,47 (9) : 1393-404.
  • 5CHEN YIFAN, HU LUOQUAN,YUEN CHAU,et al. Cooperative Diversity of Generalized Distributed Antenna Systems. Cooperative Wireless Communications [ M ]. Auerbach Publications, CRC Press ,Taylor&Francis Group ,2009:233- 256.
  • 6CHEN Y, RAPAJIC P. Decentralized Wireless Relay Network Channel Modeling: An Analogous Approach to Mobile Radio Channel Characterization[ J ]. IEEE Trans On Commun, 2010: 58(2) : 467-43.
  • 7GRIMMETT G. Percolation [ M ]. NY :Springer-Verlag, 1989.
  • 8HOLLAND B K. What are the Chances? : Voodoo Deaths, Office Gossip, and Other Adventures in Probability[ M]. Baltimore: The Johns Hopkins Univ. Pr. , 2002.
  • 9MARANO S, FRANCESCHETTI M. Ray Propagation in a Random Lattice: a Maximum Entropy, Anomalous Diffusion Process [ J ]. IEEE Trans. Antennas Propagat. , 2005, 53(6) : 1 888-1 896.
  • 10CHEN Y, HU L, YUEN C, et al. Intrinsic Measure of Diversity Gains in Generalized Distributed Antenna Systems With Cooperative Users [J]. IET Communications,2009, 3 (2) : 209-222.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部