期刊文献+

氧化锌微米棒的微观生长过程 被引量:2

Microcosmic Growth Process of ZnO Microrods
下载PDF
导出
摘要 利用物理热蒸发方法在光滑的(111)硅衬底上生长氧化锌微米棒,生长温度为700℃。在硅衬底的不同区域由于生长环境不同,生成物的形貌也不相同。利用扫描电镜图可以很直观地推测出一个完整的氧化锌微米棒生长过程。透射电镜图片显示了纳米棒与微米棒之间完美的外延关系。 ZnO microrods were synthesized on Si (111) by thermal evaporation at 700℃. Different growth environments bring to the different morphologies of the depositions. A growth mechanism of the microrods was schematically put forward through scanning electrical microscopy (SEM) images. Transmission electron microscopy (TEM) images showed the perfectly epitaxial relationship between the ZnO nanorods and microrods.
出处 《材料科学与工程学报》 CAS CSCD 北大核心 2009年第3期348-351,共4页 Journal of Materials Science and Engineering
基金 国家自然科学基金资助项目(50572095 50772099) 浙江省自然科学基金资助项目(Y407183)
关键词 晶体外貌 外延生长 物理热蒸发 自组装 crystal morphology epitaxial growth thermal evaporation self-assembly
  • 相关文献

参考文献21

  • 1Ozgur U, Alivov YI, Liu C, et al. [J]. Appl. Phys, 2005, 98: 041301-1-103.
  • 2Keis K, Vayssieres L, Liudquist S, Hagfeldt A. [J]. Nanostruet. Mater, 1999, 12:487-490.
  • 3Minne SC, Manalis SR, Quate CF. [J]. Appl. Phys. Lett. , 1995, 67: 3918-3920.
  • 4Shibata T, Unno K, Makino E, Ito Y, Shimada S. Sens. [J]. Actuators, A, 2002, 102:106-113.
  • 5Lin HM, Tzeng SJ, Hsiau PJ, Tsai WL. [J]. Nanostruct. Mater, 1998, 10:465-477.
  • 6Wang ZL. [J].J. Phys.: Condens. Matter, 2004, 16:829-858.
  • 7Gorla CR, Emanetoglu NW, Liang S, Mayo WE, Lu Y, Wraback M, Shen H[J]. Appl. Phys, 1999, 85:2595-2602.
  • 8Huang MH, Mao S, Feick H, et al. [J]. Science, 2001, 292:1897-1899.
  • 9Arnold MS, Avouris P, Pan ZW, Wang ZL. [J]. J. Phys. Chem. B, 2003, 107:659-663.
  • 10Comini E, Faglia G, Sberveglieri G, Pan ZW, Wang ZL. [J]. Appl. Phys. Lett , 2002, 81:1869-1871.

同被引文献25

  • 1陈艺锋,唐谟堂,杨声海.四针状氧化锌晶须的生长机理[J].中国有色金属学报,2005,15(3):423-428. 被引量:11
  • 2解挺,焦明华,俞建卫,吴玉程,张立德.准一维纳米材料制备方法的研究现状和发展趋势[J].材料科学与工程学报,2006,24(2):311-315. 被引量:18
  • 3SHAH K S, BENNETT P, KLUGERMAN M, et al. Lead iodide optical detectors for gamma ray spectroscopy [J]. IEEE Transactions on Nuclear Science, 1997, 44 (3): 448- 450.
  • 4RYU Y, LEE T S, LUBGUBAN J A, et al. Next generation of oxide photonic devices: ZnO-hased ultraviolet light emitting diodes [J]. Applied Physics Letters, 2006, 88 (24): 241108- 1 - 241108-3.
  • 5BARUWATI B, KUMAR D K, MANORAMA S V. Hydro- thermal synthesis of highly crystalline ZnO nanopartieles: a competitive sensor for LPG and EtOH[J]. Sensor and Actua- tors: B, 2006, 119 (2): 676-682.
  • 6WANG Z L, SONG J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays [J]. Science, 2006, 312 (5771) : 242- 246.
  • 7SUN F, SHAN C X, LIB H, et al. A reproducible route to p-ZnO films and their application in light-emitting devices [J]. Optics Letters, 2011, 36 (4) : 499- 501.
  • 8ZHAO Q, ZHANG H Z, ZHU Y W, et al. Morphological effects on the field emission of ZnO nanorod arrays [J]. Ap- plied Physics Letters, 2005, 86 (20): 203115-1-203115-3.
  • 9GEORGOBIANI A N, GRUZINTSEV A N, KOZLOVSKII V I, et al. Luminescence of ZnO nanorods grown by chemical va- por deposition on (111) Si substrates [J]. Inorganic Ma- terials, 2006, 42 (7): 750-755.
  • 10XING Y J, XI Z H, ZHANG X D, et al. Thermal evapora- tion synthesis of zinc oxide nanowires [J]. Applied Physics: A, 2005, 80 (7): 1527- 1530.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部