期刊文献+

带状电子束的空间电荷场 被引量:4

Space-charge field of sheet electron beam
下载PDF
导出
摘要 利用理论分析和数值计算的方法研究了矩形波导内均匀电流密度的带状电子束模型的空间电荷场,给出了该带状电子束模型的空间电荷场的解析表达式,并研究了空间电荷场随带状电子束的几何参数和物理参数的变化规律。研究表明:在不改变电流密度的前提下,更宽的电子束可以传输更强的束流,而空间电荷场并不随束宽度的增大而增大,但是增加电子束厚度会使空间电荷场显著增强,从而不利于高流强电子束的传输;对于相同电流的带状电子束,保持电子束厚度不变,增大电子束宽度,相应地降低电流密度是降低空间电荷场的一个很好的途径,而保持电子束的宽度不变,增大束厚度,相应地降低电流密度只会使沿着电子束截面宽度方向的电场减小,而沿着电子束截面厚度方向的电场基本不变;对于相同电流和电流密度的带状电子束,更宽、更薄的电子束横截面尺寸能使沿着电子束截面宽度方向的电场降到更低,而沿着电子束截面厚度方向的电场只是略有减小。 The space-charge field characteristics of a uniform sheet electron beam in a rectangular waveguide have been investigated theoretically and numerically. The expressions of the space-charge field components are derived, and numerically calculated for different dimensions and current densities. Results show that, for a constant current density of the sheet beam, the sheet beam could propagate with a larger current when the beam cross-section is wider. In addition, the space-charge field of the sheet electron beam with a constant current density will not be enhanced while increasing the width of the beam, but will be enhanced while increasing the thickness of the beam. However, only the electric field component along the direction of the long side of the beam cross-section is weakened by increasing the thickness of the beam, and only the electric field component along the direction of the short side of the beam cross-section could be weakened by increasing the aspect ratio of the sheet electron beam with constant current and current density.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2009年第6期889-893,共5页 High Power Laser and Particle Beams
基金 国家高技术发展计划项目
关键词 高功率微波 带状电子束 空间电荷场 均匀电流密度 high power microwave sheet electron beam space-charge field uniform current density
  • 相关文献

参考文献14

  • 1Carlsten B E. Modal analysis and gain calculations for a sheet electron beam in a ridged waveguide slow-wave structure[J]. Phys Plasmas, 2002, 9(12) :5088-5096.
  • 2Radack D J, Booske J H, Carmel Y, et al. Wiggler focused relativistic sheet beam propagation in a planar free electron laser configuration [J]. Appl Phys Lett, 1989, 55:2069-2071.
  • 3Kyhl R I., Webster H F. A hybrid dielectric slab-beam waveguide for the sub-millimeter wave region[J]. IEEE Trans Microwave Theory and Techniques, 1956, 41(10):1720-1729.
  • 4Webster H F. Breakup of hollow electron beams[J]. JAppl Phys,1955, 26:1386-1387.
  • 5Davidson R C, Tsang K T, Uhm H S. Two-dimensional small signal analysis of backward-wave oscillation in a helix traveling-wave tube under Brillouin-flow,periodic permanent magnetic focusing[J]. IEEE Trans on Electron Device, 1988, 48(8):1727-1736.
  • 6Uhm H S. Ben-Menahem S, Yu D. Diocotron instability of a relativistic sheet electron beam propagating through a rectangular conducting wall[J]. Phys Plasmas, 1994, 1(11): 3686-3692.
  • 7Booske J H, Radack D J, Antonsen T M Jr, et al. Design of high-average-power near-millimeter free electron laser oscillators using short- period wigglers and sheet electron beams[J].IEEE Trans Plasma Sci, 1990, 18:399-415.
  • 8Booske J H, Basten M A. Detailed studies of the effect of electron beam optics on the gain characteristics of a rectangular grating backwards wave amplifier[J]. IEEE Trans Plasma Sci, 1999, 27:134-134.
  • 9Zhou Jing, Bhatt R, Chen Chiping. Cold-fluid equilibrium of a large-aspect-ratio ellipse-shaped charged particle beam in a nomaxisymmetric periodic permanent magnet focusing field[C]///Proc of 2005 Partcle Accel Conf. 2005, 1-4: 853-855.
  • 10Scheitrum G. Design and construction of a W-band sheet beam klystron[R]. SLAC-PUB-11688,2005.

同被引文献29

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部