期刊文献+

高压蒸煮对苹果膳食纤维理化特性及发酵性能的影响 被引量:6

Effects of High Pressure Heat Process on the Physicochemical Properties and Fermentability of Apple Dietary Fiber
下载PDF
导出
摘要 以苹果干粉为原料提取膳食纤维,采用高压蒸煮方法处理,观察苹果膳食纤维组成及理化性质(持水力、结合水力、膨胀性)变化情况;同时以高压蒸煮处理前后的苹果膳食纤维为灌胃剂和发酵底物,做体内、体外发酵试验,测定粪便和发酵液中短链脂肪酸(SCFA)含量,研究高压蒸煮处理对苹果膳食纤维发酵特性的影响。结果发现:高压蒸煮能提高苹果膳食纤维中水溶性膳食纤维含量,尤其以处理30min最明显,提高幅度高达88.4%;但高压蒸煮使苹果膳食纤维的持水力和结合水力降低,对膨胀性影响不大;体内发酵试验表明,苹果膳食纤维不利于小鼠体内乙酸产生,但有利于丙酸和丁酸产生;与未处理苹果膳食纤维相比,中剂量饲喂高压蒸煮苹果膳食纤维(100mg/kg体重)对小鼠体内发酵产生丙酸和丁酸的效果要优于原膳食纤维。体外发酵试验显示,高压蒸煮处理苹果膳食纤维比原膳食纤维更能促进发酵液中乙酸和丙酸形成,但对丁酸形成影响不大。 Dietary fiber was extracted from dry apple powder, and then treated with different high pressure heat process. Changes of composition and physicochemical properties of dietary fiber were analyzed. To determine the effects of high pressure heat processing on in vitro and in vivo fermentability, the untreated and high pressure heat modified dietary fibers were subjected to in vitro fermentation and animal test, and the formation of short chain fatty acid (SCFA) were investigated. The results showed that the fraction of SDF increased 88.4%, water-- holding capacity and water-- binding capacity decreased significantly with treatment last for 30 min, but no great variation was observed for swelling capacity. When compared to untreated one, a medium dosage of 100mg/(kg·bw) of modified dietary fiber can significantly enhanced in vivo formation of propionic and butyric acids irl the mice faces. Furthermore, modified dietary fiber facilitated the for: mation of acetic and propionic acids in vitro fermented liquor, but hindered the formation of butyric acid.
出处 《食品与发酵工业》 CAS CSCD 北大核心 2009年第5期90-93,共4页 Food and Fermentation Industries
基金 教育部留学回人员基金资助项目(2007-1108)
关键词 高压蒸煮 苹果膳食纤维 理化特性 发酵 短链脂肪酸 high pressure heat process, apple dietary fiber, physicochemical properties, fermentability,short chain fatty acid
  • 相关文献

参考文献13

  • 1陈燕,曹郁生,刘晓华.短链脂肪酸与肠道菌群[J].江西科学,2006,24(1):38-40. 被引量:67
  • 2詹彦,支兴刚.短链脂肪酸的再认识[J].实用临床医学(江西),2007,8(1):134-135. 被引量:23
  • 3AOAC. Official Methods of Analysis, 16th ed' Washington (DC) : Association of Official Analytical Chemists, 1997.
  • 4Pilar Ruperez, Fulgencio, Saura-Calixto. Dietary fiber and physicochemical properties of edible seaweeds[J]. Eur Food Res Technol, 2001,212 : 349-- 354.
  • 5Chau CF, Huang YL. Comparison of the chemical corn position and physicochemical properties of different fi bres prepared from the peel of Citrus sinensis L. Cv. Liucheng[J]. J Agric Food Chem,2003,51 :2 615--2 618.
  • 6Turnbull CM,Baxter AL,Johnson SK. Water-binding capacity and viscosity of Australian sweet lupin kernel fiber under in vitro conditions simulating the human upper gastrointestinal tract[J]. Intern J Food Sci Nutr, 2005,56 (2) : 87 -- 94.
  • 7Shimotoyodome A,Yajima N, Suzuki J, et al. Effects of coingestion of different fibers on fecal excretion and cecal fermentation in rats[J]. Nutr Res,2005,25 : 1 085-- 1 096.
  • 8Livesey BC, Smith T, Eggum BO, et al. Determination of digestible energy values and fermentabilities of dietary fiber supplements: a European interlaboratory study in vivo[J]. Br J Nutr,1995,74:289--302.
  • 9Goff GL, Noblet J,Cherbut C. Intrinsic ability of the faecal microbial flora to ferment dietary fiber at different growth stages of pigs[J]. Livest Prod Sci, 2003, 81:75--87.
  • 10Barry BJL, Hoebler c, Macfarlane GT, et al. Estimation of the fermentability of dietary fiber in vitro:a European interlaboratory study[J]. Br J Nutr, 1995,74 : 303-- 322.

二级参考文献30

  • 1Wolin M J,Miller T L,et al.Changes of fermentation pathways of fecal microbial communities associated with a drug treatment that increases dietary starch in the human colon[J].Appl Environ Microbio,1999,65(7):2807-2812.
  • 2Cummings J H,Macfalane G T.The control and consequences of bacterial fermentation in the human colon[J].J Appl Bacteriol,1991,70(6):443-459.
  • 3McNeil N I.The contribution of the large intestine to energy supplies in man[J].Am J Clin Nutr,1984,39(2):338-342.
  • 4Archer S Y,Meng S,et al.p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells[J].Proc Natl Acad.Sci.USA,1998,95(12):6791-6796.
  • 5Tanaka Y,Bush K,et al.Effects of 1,25-dihydroxyvitamin D3 and its analogs on butyrate-induced differentiation of HT-29 human colonic carcinoma cells and on the reversal of the differentiated phenotype[J].Arch Biochem Biophys,1990,276:415.
  • 6Scheppach W,Bartram H P,et al.Role of short-chain fatty acids in the prevention of colorectal cancer[J].Eur J Cancer.1995,31A:1077-1080.
  • 7Scheppach W,Fabian C,et al.The effect of starch malabsorption on fecal short-chain fatty acid excretion in man[J].Scand J Gastroenterol,1988,23:755-759.
  • 8Gibson G R,Macfarlane G T.Human colonic bacteria role in nutrition[M].physiology and pathology,1995,CRC Press.
  • 9Tsukahara T,Iwasaki Y,Nakayama K,et al.Stimulation of Butyrate Production in the Large Intestine of Weaning Piglets by Dietary Fructooligosaccharides and its Influence on the Histological Variables of the Large Intestinal Mucosa[J].J Nutr Sci Vitaminol,2003,49(6):414-421.
  • 10Annison G,Illman R J,Topping D L.Acetylated,Propionylated or Butyrylated Starches Raise Large Bowel Short-chain Fatty Acids Preferentially when Fed to Rats[J].J Nutr,2003,133(11):3523-3528.

共引文献84

同被引文献96

引证文献6

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部