期刊文献+

从头算方法研究面心立方铝在高温高压下的热力学状态方程 被引量:1

Ab initio simulation on thermodynamic equation of state of fcc aluminum under high temperature and pressure
原文传递
导出
摘要 用从头算方法优化计算了面心立方铝的电子结构和总能,得到了它在零温下的状态方程和弹性性质.将得到的总能与晶格体积拟合到Debye模型,获得了非平衡态下的Gibbs自由能与温度、压力之间的关系,在此基础上计算了相应的热状态方程,利用Burakovsky-Preston-Silbar(BPS)熔化模型计算了铝的熔化曲线.所有的电子结构和总能计算都是基于局域密度近似(LDA)和广义梯度近似(GGA)的平均得到的.计算得到的铝在高温、高压下的状态方程与一些热力学性质和熔化曲线同冲击波和静高压实验数据在225GPa压力范围内符合良好. The ab initio electronic structure optimization and total-energy calculations are used to study the equation of state (EOS) and elastic properties of fcc aluminum at zero temperature. We use the calculated energy of a solid as a function of the molecular volume fitting to the quasi-harmonic Debye model to obtain the non-equilibrium Gibbs function, then to derive the thermal equation of state (EOS) of the corresponding phase. The melting curve at different pressures is presented based on the Burakovsky-Preston-Silbar (BPS) model. All total-energy calculations are based on the average of local density approximation (LDA) and general gradient approximation (GGA). The results show that the calculated EOS and pressure dependence of thermodynamics and melting curve are in good agreement with the shock compression and the diamond-anvil-cell (DAC) data within a wide range of pressure up to 225 GPa.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2009年第6期4103-4108,共6页 Acta Physica Sinica
基金 冲击波物理与爆轰物理国防科技重点实验室基金(批准号:9140C6711010805) 国家自然科学基金(批准号:40604007)资助的课题~~
关键词 热力学状态方程 从头算 熔化曲线 aluminum, thermodynamics, ab initio, melting curve
  • 相关文献

参考文献46

  • 1Wang Y, Chen D, Zhang X 2000 Phys. Rev. Lett. 84 3220
  • 2Straub G K, Aidum J B, Wills J M, Sanchez-Castro C R, Wallace D C 1994 Phys. Rev. B 50 5055
  • 3Soma T, Minami M, Kagaya H M 1991 Phys. Status Solidi B 166 K1
  • 4Holian K S 1986 J. Appl. Phys. 59 149
  • 5Soma T, Konno Y, Kagaya H M 1983 Phys. Status Solidi B 117 743
  • 6Friedi C, Asheroft N W 1975 Phys. Rev. B 12 5552
  • 7Sin' ko G V, Smimov N A 2002 J. Phys. : Condens. Matter 14 6989
  • 8Xiang S K, Cai L C, Jing F Q ,Wang S 2004 Phys. Rev. B 70 174102
  • 9Nellis W J, Mofiarty J A, Mitchell A C, Ross M, Dandrea R G, Ashcroft N W, Holmes N C,Gathers G R 1988 Phys. Rev. Lett. 60 1414
  • 10Mitchell A C , Nellis W J 1981 J. Appl. Phys. 52 3363

同被引文献17

  • 1迟广俊,范君,姚素薇.抗菌功能性铝基材料的制备及表征[J].稀有金属材料与工程,2006,35(4):659-661. 被引量:4
  • 2沈保罗.铸造铝基复合材料在汽车工业中的应用[J].稀有金属材料与工程,1996,25(6):46-49. 被引量:10
  • 3黄昆,韩汝琦.固体物理学[M].北京:高等教育出版社,2004.
  • 4Daw M S, Baske M I. Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and other Defects in Metals [J]. Phys. Rev. B, 1984, 29(12): 6443-6453.
  • 5Johnson R. A. Analytic Nearest-Neighbor Model for fcc Metals[J]. Phys. Rev. B, 1988, 37(8): 3924-3931.
  • 6Johnson R A. Phase Stability of fcc Alloys with the Embedded-Atom Method [J].Phys. Rev. B, 1990, 41(14): 9717-9720.
  • 7Zhang Bangwei, Ouyang.Yifang. Theoretical Calculation of Thermodynamic Data for bcc Binary Alloys with the Embedded-Atom Method [J]. Phys. Rev .B, 1993, 48(5): 3022- 3029.
  • 8张邦维,胡望宇,舒小林.嵌入原子方法理论及其在材料科学中的应用)[M].长沙:湖南大学,2002,245-256.
  • 9Hu Wangyu, Zhang Bangwei, Huang Baiyun, et al. Analytic modified embedded atom potentials for HCP metals[J]. J. Phys.: Condens. Matter, 2001, 13:1193-1213.
  • 10Greene R Cg Luo H, Ruoff. AI as a Simple Solid: High Pressure Study to 220 GPa (2.2 Mbar) [J].Phys.Rev.Lett. 1994:732075.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部