期刊文献+

基于多信息融合自适应粒子滤波的目标跟踪算法

Object tracking based on multi-information and auto-adapted particle filter
下载PDF
导出
摘要 粒子滤波是一种可在非线性和非高斯情况下进行状态估计的有效方法,基于单特征粒子滤波跟踪算法在目标跟踪中的应用及存在的不足,针对颜色信息在光照变化和相似背景条件下存在的缺点,为了仍能对目标进行有效地跟踪,加入纹理信息来表示目标,并给出基于目标的颜色特征和纹理特征多信息融合的自适应粒子滤波算法,使用三种量测模型并给出具体的算法和实验结果,实验证明此方法与仅基于颜色粒子滤波跟踪方法相比,在计算量增加不多的情况下大大改善了跟踪的性能和鲁棒性。 Particle filter is an effective way to estimate the state under non-linear and non-Gaussian. In this paper, based on the shortcomings of characteristics of the particle filter with a single cue and the light of information for color change and conditions similar to the background, in order to track target effectively, texture information is also added to show the target, and we give au- to-adapted particle filter algorithm based on the color characteristic and the texture characteristic multi-information fusion. Using three kinds of measure models, we also give specific algorithms and experimental results. Compared with color-based particle filter tracking methods, the method of this paper improves the track performance and robustness greatly.
出处 《信息化纵横》 2009年第11期21-24,共4页
基金 国家基础研究项目(A1420060159)
关键词 运动目标 颜色直方图 纹理直方图 BHATTACHARYYA系数 自适应粒子滤波 moving target color histogram texture histogram Bhattacharyya coefficient auto-adapted particle filter
  • 相关文献

参考文献5

  • 1ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non- Gaussian Bayesian tracking [J]. IEEE Transaction on Signal Processing, 2002, 50(2):174-188.
  • 2胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 3Alper Yilmaz,Omar javed, Mubarak shah. Object Tracking: A Survey[J]. ACM Computing Surveys, 2006,38(4).
  • 4KAILATH T. The Divergence and Bhattacharyya Distance Measures in Signal Selection. IEEE Trans on Communication Technology, 1967,15:52-60.
  • 5MAENPAA T, PIETIKAINEN M. Texture analysis with local binary patterns. In: chen & Wang PSP (eds) Handbook of Pattern Recognition and Computer Vision,3rd ed.World Scientific, 2005 : 197-216.

二级参考文献1

共引文献292

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部