期刊文献+

Solutions to the equations describing materials with competing quadratic and cubic nonlinearities

Solutions to the equations describing materials with competing quadratic and cubic nonlinearities
下载PDF
导出
摘要 The Lie group theoretical method is used to study the equations describing materials with competing quadratic and cubic nonlinearities. The equations shave some of the nice properties of soliton equations. From the elliptic functions expansion method, we obtain large families of analytical solutions, in special cases, we have the periodic, kink and solitary solutions of the equations. Furthermore, we investigate the stability of these solutions under the perturbation of amplitude noises by numerical simulation. The Lie group theoretical method is used to study the equations describing materials with competing quadratic and cubic nonlinearities. The equations shave some of the nice properties of soliton equations. From the elliptic functions expansion method, we obtain large families of analytical solutions, in special cases, we have the periodic, kink and solitary solutions of the equations. Furthermore, we investigate the stability of these solutions under the perturbation of amplitude noises by numerical simulation.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第6期2352-2358,共7页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant Nos 10575087 and 10875106)
关键词 competing nonlinearities the elliptic functions expansion SOLITON numerical simulation competing nonlinearities, the elliptic functions expansion, soliton, numerical simulation
  • 相关文献

参考文献18

  • 1Agrawal G P 1995 Nonlinear Fiber Optics (San Diego: Academic)
  • 2Torruellas W E, Wang Z, Hagan D J, Van Strykland E W, Stegeman G I, Torner L and Menyuk C 1% 1995 Phys. Rev. Lett. 74 5036
  • 3Schiek R, Baek Y and Stegeman G I 1996 Phys. Rev. E 53 1138
  • 4Clausen C B, Bang O and Kivshar Y S 1997 Phys. Rev. Left. 78 4749 and references therein
  • 5Stegeman G I, Hagan D J and Torner L 1996 Opt. Quantum Electron. 28 1691
  • 6Trillo S, Buryak A V and Kivshar Y S 1995 Nonlinear Guided Waves and Their Applications (Vol 6 of OSA Technical Digest Series) (Washington D.C.: Optical Society of America) pp36-38
  • 7Bang O, Kivshar Y S, Buryak A V, Rossi A D and Trillo S 1998 Phys. Rev. E 58 5057
  • 8Mihalache D, Mazilu D, Malomed B A, Lederer F, Crasovan L C, Kartashov Y V and Torner L 2006 Phys. Rev. E 74 047601
  • 9Bang O, Kivshar Y S and Buryak A V 1997 Opt. Lett. 22 1680
  • 10Mihalache D, Mazilu D, Malomed B A and Lederer F 2004 Phys. Rev. E 69 066614

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部