期刊文献+

基于自联想神经网络的谷氨酸发酵故障诊断 被引量:2

Fault diagnosis for glutamic acid fermentation by an auto-associative neural network
下载PDF
导出
摘要 研究了用自联想神经网络对谷氨酸发酵进行故障诊断。自联想神经网络采用一种带有瓶颈层的特殊结构,且具有单位总增益。在经过大量样本的训练之后,各变量之间能够建立起内在联系。输入信息通过瓶颈层前的压缩及瓶颈层后的解压缩过程,信息中的精华将被提取。应用自联想神经网络对发酵过程变量进行预处理,可以准确及时的进行谷氨酸发酵故障诊断。 An auto-associative neural network ( AANN ) was used to detect faults from glutamic acid fermentation. The AANN adopted a special structure with a bottle-neck layer and had a unit overall gain. The internal relation between the variables could be built after the training of a large amount of samples. The quintessence of the information could be obtained through the compression before the bottle-neck layer and the decompression after that. The simulation results showed that the AANN could ac- curately and immediately detect the faults from glutamic acid fermentation.
出处 《生物学杂志》 CAS CSCD 2009年第3期33-37,共5页 Journal of Biology
关键词 谷氨酸发酵 自联想神经网络 故障诊断 glutamic acid fermentation an auto-associative neural network fault diagnosis
  • 相关文献

参考文献3

  • 1David A,Mitchell A,Oscar F,et al.Recent developments in modeling of solid-state fermentation:heat and mass transfer in bioreactors[J].Biochenmical Engineering Joural,2003,13:137-147.
  • 2Huang J H,Nanami H,Kanda A,et al.Classification of fermentation performance by multivariate analysis based on mean hypothesis testing[J].J.Biosci & Bioeng,2002,94 (3):251-257.
  • 3Vanek M.On-line estimation of biomass concentration using a neural network and information about metabolic state[J].Bioprocess Biosyst Engineering,2004,27 (1):9-15.

同被引文献38

  • 1芮挺,沈春林,张金林.基于字符特征的车牌英文和数字字符自联想识别[J].模式识别与人工智能,2004,17(4):467-472. 被引量:3
  • 2陈蕾,陈松灿,张道强.小世界体系的多对多核联想记忆模型及其应用[J].软件学报,2006,17(2):223-231. 被引量:9
  • 3陈蕾,王传栋,孙知信,陈松灿.距离加权的2-D核自联想记忆模型及其应用[J].模式识别与人工智能,2007,20(1):110-114. 被引量:2
  • 4许跃,朱伟兴.基于自联想神经网络的传感器故障诊断[J].传感器与微系统,2007,26(4):94-96. 被引量:2
  • 5周志华,曹存根.神经网络的研究和进展[M].北京:清华大学出版社,2004.
  • 6Hopfield J J.Neural networks and physical systems with emergentcollective computational properties[J].Proceedings of National Academy of Sciences,USA,1982,79:2554-2558.
  • 7Hopfield J J.Neurons with grade response have collective computational properties like those of two-state neurons[J].Ploceedings of the National Academy of Sciences,USA,1984,81:3088-3092.
  • 8Psaltis D,Park H C.Nonlinear discriminant functions and associative memories[M]//in Neural Networks for Computing.Denker J S.New York,NY:American Institute of Physics,1986:370-375.
  • 9Dembo A,Zeitouni O.High density associative memories[M]//in Neural Information Processing Systems.Anderson D Z.New York,NY:American Institute of Physics,1988:211-218.
  • 10Dembo A,Zeitouni O.General potential surfaces and neural networks[J].Physics Review A,1988,37(6):2134-2143.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部