期刊文献+

利用联合生物工艺生产燃料乙醇的研究进展 被引量:1

Research on the Production of Fuel Alcohol by Consolidated Bioprocessing
下载PDF
导出
摘要 随着生物技术越来越多的介入到燃料乙醇的生产中,联合生物工艺(consolidated biopricessing)—CBP,因其可将纤维酶生产、纤维素水解和酒精发酵融合于一步工艺中完成,更是成为其中的亮点。为使联合生物工艺成为可能,以两种途径对所需微生物进行改造:一种是天然纤维降解微生物改造途径,将天然存在的可降解纤维素的微生物,尤其是厌氧微生物进行改造,以使其适应CBP生产的要求;另一种是重组途径,通过基因重组的方式将不能降解纤维的微生物获得降解纤维素的能力,并且生产的产品性质符合CBP的要求。两种途径的对微生物的改造,无论从经济性和社会效益,都将为高能耗时代的今天,提供一种低成本的燃料乙醇生产方式。 Nowadays, with more and more biotechnology were used in the production of fuel alcohol, (CBP)-featuring cellulase production, cellulose hydrolysis and fermentation in one step-was becoming one potential approach for its outstandings. In general, consolidated bioproeessing CBP was denveloped through two strategies. One was accompished by reforming the way of decomposing microbes by natural fibers. In order to meet the demand of the production of CBP, a reforming use was made for nature-born microbes especially oxygen-loathing ones. Another was accomplished by reconstructing, which enabled microbes can't decompose fibers to acquire the ability of decomposing as well as to meet the demand of CBP. The above two ways, no matter the consideration of economy and social benefits, can both offer us resolutions to produce fuel alcohol with less input at present-a time when everything was consumed too much.
作者 廖礼斌
出处 《广州化工》 CAS 2009年第3期66-68,共3页 GuangZhou Chemical Industry
关键词 纤维素 燃料乙醇 联合生物工艺 重组途径 cellulose fuel alcohol consolidated recombinant strategy
  • 相关文献

参考文献19

  • 1王桂强.浅谈从生物质制取液体燃料乙醇工艺[J].辽宁化工,1999,28(5):271-276. 被引量:7
  • 2黄忠乾,龙章富,彭卫红,郑林用,肖在勤,谭伟.农作物秸秆资源的综合利用[J].资源开发与市场,1999,15(1):32-34. 被引量:67
  • 3曲音波,高培基.造纸厂废物发酵生产纤维素酶、酒精和酵母综合工艺的研究进展[J].食品与发酵工业,1993,19(3):62-65. 被引量:34
  • 4Delucchi MA: Emissions of greenhouse gases from the use of transportation fuels and electricity. Vol. 1. Argonne National Laboratory, Argonne, IL; 1991.
  • 5Greer D: Creating cellulosic ethanol. Spinning straw into fuel. Biocycle 2005, 46:61-65.
  • 6Ingram LO, Aldrich HC, Borges ACC, Cansey TB, Martinez A, Morales F, Saleh A, Underwood SA, Yomano LP, York SW et al.: Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 1999, 15:855-866.
  • 7Jennert KCB, Tardiff C, Young DI, Young M: Gene transfer to Clostridium cellulolyticum ATCC 35319. Microbio12000, 146:3071-3080.
  • 8Tyurin M, Desai SG, Lynd LR: Electrotransformation of Clostridium thermocellum. Appl Environ Microbiol 2004, 70:883-890.
  • 9Klapatch TR, Guerinot ML, Lynd LR: Electrotransformation of Clostridium thermosaccharolyticum. J Ind Microbiol 1996, 16:342-347.
  • 10Mai V, Lorenz WW, Wiegel J: Transformation of Thermanaerobacterium sp. strain JW/SL-YS485 with plasmid plKM1 conferring kanamycin resistance. FEMS Microbiol Lett 1997, 148:163-167.

二级参考文献17

共引文献104

同被引文献12

  • 1Ha S J,Galazka J M,Oh E J,et al.Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters.Metab Eng,2013,15:134-143.
  • 2Eliasson A,Christensson C,Wahlbom C F,et al.Anaerobic Xylose Fermentation by Recombinant Saccharomyces cerevisiae Carrying XYL1,XYL2 and XKS1 in Mineral Medium Chemostat Cultures.Appl EnviroMicrobiol,2000,66(8):3381-3386.
  • 3Kuyper,M,Harhangi HR,Stave AK,et al.High-level functional expression of a fungal xylose isomerase:the key to efficient ethanolic fermentation of xylosebySaccharomycescerevisiae?FEMSYeastRes,2003,4:69-78.
  • 4Johansson B,Hahn-H(a)gerdal B.The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomycescerevisiae.FEMSYeast,2002,2:277-282.
  • 5Tr(a)ffKL,Otero Cordero RR,van Zyl WH,et al.Deletion of the GRE3 Aldose Reductase gene and its Influence on Xylose metabolism in Recombinant Strains of Saccharomyces cerevisiae expressing xylA and XKS 1 genes.ApplEnvironMicrobiol.2001,67(12):5668-5674.
  • 6Zhou H,Cheng JS,Wang BL,et al.Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae.Metab Eng,2012,14:611-522.
  • 7K(o)tter P,Ciriacy M.Xylose fermentation by Saccharomyces cerevisiae.ApplMicrobion Biotechnol.1993,38:776-783.
  • 8Geng AL,Peng BY.Xylose isomerase genes for xylose-fermenting yeast construction.Singapore,201309282-0.2013.
  • 9Güldener U,Heck S,Fielder T,et al.A new efficient gene disruption cassette for repeated use in budding yeast.Nucleic Acids Res,1996,24(13):2519-2524.
  • 10Livak K J,Schmittgen T.Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Cr method.Methods,2001,25:402-408.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部