期刊文献+

基于蚁群算法的多属性路径选择模型 被引量:6

Model of Choosing Routes with Multi-attributes Based on Ant Colony Algorithm
原文传递
导出
摘要 针对交通网络中多属性条件下的路径选择问题,本文基于蚁群算法讨论了给定起讫点对之间综合最优路径的实现步骤。首先将蚁群按照所给的属性集合分为若干个子蚁群,每个子蚁群给定不同的属性目标。然后在每一次循环的过程中,子蚁群按照既定的属性进行路径选择,在所有的子蚁群完成一次循环后,全局更新信息素。可知,各个子蚁群既按照自己的目标搜索最优解,同时各个子蚁群之间又互相影响,使得所得的结果不仅对于每个属性目标较优,而且综合效果也很好。最后进行了仿真实验并分析了结果。 For the route choice problem with multi-attributes in traffic networks, this paper, based on Ant Colony Algorithm (ACA), obtains the model of getting synthesis optimal path for specified origin and destination. At first, the ant colony is divided into some sub-ant colonies, and different sub-ant colonise have different attributes. Then, each sub-ant colony makes a route choice according to its attribute in iteration. When all sub-ant colonies have finished iteration, we update the pheromone value. Each sub-ant colony not only searches optimal solution with its specified attribute, but also they influences each other. Therefore, the solution would be better for each attribute. In the end, a simulated test is executed.
出处 《系统工程》 CSCD 北大核心 2009年第5期30-34,共5页 Systems Engineering
基金 国家自然科学基金资助项目(60870008) 甘肃省自然科学基金资助项目(3XS051-A25-030)
关键词 路径选择 多属性 蚁群算法 模型 Route Choice Multi-attributes Ant Colony Algorithm Model
  • 相关文献

参考文献14

  • 1Modesti P, Sciomachen A. A utility measure for finding multiobjective shortest paths in urban multimodal transportation networks[J]. European Journal of Operational Research, 1998,111 (3) : 495 - 508.
  • 2Mirchandani P B, Wiecek M M. Routing with nonlinear multi-attribute cost functions[J]. Applied Mathematics and Computation, 1993, 54 (2) : 215 -239.
  • 3Nozick L K, List G F, Turnquist M A. Integrated routing and scheduling in hazardous materials trans- portation [J]. Transportation Science, 1997, 31 (3): 200-215.
  • 4Cai X, Kloks T, Wong C K. Time-varying shortest path problems with constraints[J]. Networks, 1997, 29(3):141-149.
  • 5Lam W H K,Li Z C,Huang H J,Wong S C. Modeling time-dependent travel choice problems in road networks with multiple user classes and multiple parking facilities[J]. Transportation Research Part B,2006,40(5):368-395.
  • 6Chang T S, Noziek L K, Tumquist M A. Multiobjective path-finding in stochastic dynamic networks with application to routing hazardous materials shipments[J]. Transportation Science, 2005,39 (3) : 383 -399.
  • 7Opasanon S, Miller-Hooks E. Multicriteria adaptive paths in stochastic, time-varying networks[J]. European Journal of Operational Research, 2006,173(1):72-91.
  • 8Gao S, Chabini I. Optimal routing policy problems in stochastic time-dependent networks[J]. Transportation Research Part B, 2006,40 (2) : 93-122.
  • 9Sitarz S. Ant algorithms and simulated annealing for multi-criteria dynamic programming[J]. Computer & operations research, 2009,36 : 433- 441.
  • 10Iredi S, Merkle D, Middendorf M. Bi-criterion optimization with multi colony ant algorithms[A]. The First International Conference on Multi- Criterion Optimization [C ]. Zurich, Switzerland, 2001,359-372.

二级参考文献8

  • 1Dorigo M, Maniezzo V, Colorni A. The Ant System:Optimization by a colony of cooperating agents [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 1996,26(1):29-41.
  • 2Dorigo M,Gambardella L M. Ant colony system:a cooperative learning approach to the traveling salesman problem [J]. IEEE Transactions on Evolutionary Computation,1997,1(1) :53-66.
  • 3Dorigo M, Gambardella L M, Middendorf M,Stutzle T. Guest editorial: special section onant colony optimization [J]. IEEE Transactions on Evolutionary Computation, 2002, 6.(4):317-319.
  • 4Stutzle T, Hoos H. MAX-MIN Ant System[J]. Future Generation Computer Systems,2000,16(8) : 889-914.
  • 5杜端甫.运筹图论[M].北京:航空航天大学出版社,1990..
  • 6庄昌文,范明钰,李春辉,虞厥邦.基于协同工作方式的一种蚁群布线系统[J].Journal of Semiconductors,1999,20(5):400-406. 被引量:17
  • 7全惠云,文高进.求解TSP的子空间遗传算法[J].数学理论与应用,2002,22(1):36-39. 被引量:23
  • 8胡静,陈恩红,王上飞,王熙法.交互式遗传算法中收敛性及用户评估质量的提高[J].中国科学技术大学学报,2002,32(2):210-216. 被引量:18

共引文献167

同被引文献52

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部