期刊文献+

传染病异方差性时序数据的建模与拟合 被引量:1

Modeling and fitting for heteroscedastic time-series data of infectious diseases
原文传递
导出
摘要 目的探讨异方差性时间序列模型在传染病疫情数据分析中的应用。方法分别采用ARIMA和AR-GARCH模型对某市淋病发病率月报数据进行建模和拟合。结果本资料构成的时间序列经检验具有明显异方差性,经模型比较和筛选,AR(1)-GARCH(0,1)模型能够较好的拟合本研究中传染病疫情时序数据。结论AR-GARCH模型适用于传染病疫情数据构成的异方差性时序数据分析。 Objective To explore the application of heteroscedastic time series model to the analysis of data of infectious diseases. Methods ARIMA and AR-GARCH models were used to fit the incidence of gonorrhea. Results The time series in this study, which was heteroscedastic significantly, finally was well fitted by AR ( 1 )-GARCH (0,1) model through model selecting. Conclusions AR-GARCH model is suitable for analyzing heteroscedastic time-series data of infectious diseases.
出处 《中华疾病控制杂志》 CAS 2009年第3期355-357,共3页 Chinese Journal of Disease Control & Prevention
关键词 AR-GARCH模型 时序数据 异方差 传染病 AR-GARCH model Time-series data Heteroseedasticity Communicable diseases
  • 相关文献

参考文献4

二级参考文献23

共引文献175

同被引文献9

  • 1谢科范.评灰色系统理论[J].系统工程,1991,9(4):49-52.
  • 2艾维莉,林新勤,徐永芳,黄家运,李素芬.南宁市淋病1996~2005年发病率灰色模型及预测研究[J].中国热带医学,2007,7(9):1554-1555. 被引量:9
  • 3Kalman RE. A new approach to linear filtering and predictionproblems [J]. Journal of Basic Engineering, 1960,82 (SeriesD):35-45.
  • 4Rao CR. A note on Kalman Filter [J]. Proceedings of the NationalAcademy of Science, 2001, 98 (19) : 10557-10559.
  • 5Brockwell PJ, Davis RA. Introduction to time series and forecast-ing[M]. 2nd ed. New York: Springer-Verlag, 1996.
  • 6江泽坚,孙善利.泛函分析[M].北京:高等教育出版社,2004.
  • 7Box GEP, Jenkins GM, Reinsel GC. Time series analysis fore-casting and control[M]. 4th ed. New York: John Wiley&Sons Inc,2008.
  • 8路德曼著,邱天爽,李婷,毕英伟译.随机过程.滤波、估计和检测[M].北京:电子工业出版社,2005.
  • 9潘迪夫,刘辉,李燕飞.基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[J].电网技术,2008,32(7):82-86. 被引量:221

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部