期刊文献+

改进蚁群算法的斜齿轮传动多目标优化 被引量:2

Multi-objective Optimization of Helical Gearing Based on Improved Ant-colony Algorithm
下载PDF
导出
摘要 本文针对传统蚁群算法在优化目标函数和设计变量较多时,收敛速度慢和容易陷入局部最优等缺点,提出了一种改进的蚁群优化算法。并对两级斜齿圆柱齿轮减速器在考虑其动态性能、体积、可靠度多目标下对齿轮参数进行了优化。其结果与传统设计相比,在保持了减速器较高可靠性的同时,获得了较好的动态性能和较小的体积。本文提出的改进蚁群算法为斜齿轮减速器提供了一种新的优化设计方法。 When optimization problem has many objective function and design variable, the traditional ant colony algorithm exist some shortcomings such as slow computing speed, and easy to fall in local minimum in the large scale problem. So this paper put forward an improved ant colony algorithm. By using the improved ant colony algorithm, this text optimizes two-grade helical gear reducer parameter. Compared with the traditional design, the results show that the improved ant colony algorithm obtains better dynamic performance and less volume. At the same time it ensures the reducer more reliability. The improved ant colony algorithm that this paper put forward is a new optimal designing method for helical gear reducer.
出处 《现代机械》 2009年第3期1-3,共3页 Modern Machinery
关键词 改进蚁群算法 多目标 斜齿轮传动 优化设计 improved ant-colony algorithm multi-objective helical gearing optimization design
  • 相关文献

参考文献7

二级参考文献48

  • 1熊伟清,赵杰煜.遗传算法的早熟收敛[J].宁波大学学报(理工版),2001,14(2):23-27. 被引量:7
  • 2唐泳,马永开,唐小我.用改进蚁群算法求解函数优化问题[J].计算机应用研究,2004,21(9):89-91. 被引量:7
  • 3段海滨,王道波,朱家强,黄向华.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326. 被引量:211
  • 4Lin H H,J Mechan Trans Autom Design,1988年,110卷,221页
  • 5Dorigo M, Maniezzo V, colorni A. The Ant System: Optimation by a colony of cooperating Agents[J]. IEEE Transactions on Systems, Man, and Cybernetics - Part B, 1996, 26( 1 ): 1 - 13.
  • 6Dorogo M,Maniezzo V,Colori A.Ant Syatem:Optimization by a Coloy of Cooperating Agents[J].IEEE Trans On System,Man,and Cybernetics,1996,26(1):28~41.
  • 7Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies. Proceedings of the First European Conference on Artificial Life, Paris, France, 1991.
  • 8Goss S, Aron S, Deneubourg J L, et al. Self-organized shortcuts in the Argentine ant. Naturwissenschaften, 1989,76( 12 ) :579 - 581.
  • 9Dorigo M, Maniezzo V , Colorni A. Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, Part B, 1996,26 ( 1 ) :29 - 41.
  • 10Dorigo M, Di Caro G. Ant colony optimization: a new meta-heuristic. The Congress on Evolutionary Computation, Washington, DC, 1999.

共引文献133

同被引文献14

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部