期刊文献+

基于函数值的有理二次插值曲线的区域控制

Region Control of a Rational Quadratic Interpolating Curve Based on Function Values
下载PDF
导出
摘要 将插值曲线约束于给定的区域之内是曲线形状控制中的重要问题。构造了一种基于函数值的分母为二次的C1连续有理二次插值函数,该函数中含有参数,因而可以在插值条件不变的情况下通过对参数的选择进行曲线的局部修改,同时可通过对参数的控制实现C2连续的插值。给出了将该种插值曲线约束于给定的折线、二次曲线之上、之下或之间的充分条件及将其约束于给定折线之上、之下或之间的充分必要条件。 To constrain the interpolating curves to be bounded in the given region is an important problem in curve design. A rational quadratic interpolation function based on function values with quadratic denominators is constructed. The sufficient conditions for the interpolating curves to be above, below or between the given broken lines or piecewise quadratic curves and the sufficient and necessary conditions for the interpolating curves to be above, below or between the given broken lines are derived.
出处 《工程图学学报》 CSCD 北大核心 2009年第3期94-99,共6页 Journal of Engineering Graphics
基金 国家自然科学基金资助项目(60773110) 湖南省教育厅科研资助项目(06C791) 湖南省科技计划资助项目(2008FJ3046) 湖南省重点学科建设资助项目 湖南省高校科技创新团队计划支持项目 安徽省教育厅自然科研资助项目(KJ2008B250)
关键词 计算机应用 有理二次插值 约束插值 形状控制 computer application rational quadratic interpolation constrained interpolation shape control
  • 相关文献

参考文献17

  • 1Farin G. Curves and surfaces for computer aided geometric design: A practical guide [M]. Academic Press, 1988.28-54.
  • 2Foley T A. Local control of interval tension using weighted splines [J]. Computer Aided Geometric Design, 1986, 3(2): 281-294.
  • 3Dierck P, Tytgat B. Generating the Bezier points of fl-spline curve [J].Computer Aided Geometric Design, 1989, 6(2): 279-291.
  • 4Piegl L. On NURBS: A survey [J]. IEEE Computer Graphics and Application, 1991, 11(1): 55-71.
  • 5Nielson G M. CAGD's top ten: What to watch [C]// IEEE Computer Graphics and Automation, 1993: 35-37.
  • 6Kouichi Konno, Hiroaki Chiyokura. An approach of designing and controlling free-form surfaces by using NURBS boundary Gregory patches [J]. Computer Aided Geometric Design, 1996, 13(4): 825-849.
  • 7Schmidt J W, He B W. Positivity of cubic polynomials on intervals and positive spline interpolation [J]. BIT, 1988, 28(2): 340-352.
  • 8Lin R S. Real-time surface interpolator for 3D parametric surface machining on 3-axis machine tools [J]. Machine tools and Manufacture, 2000, 40:1513-1526.
  • 9Jiang D H, Liu H N, Wang W G. Test a modified surface wind interpolation scheme for complex terrain in a stable atmosphere [J]. Atmospheric Environment, 2001, 35: 4877-4885.
  • 10Peter Comninos. An interpolating piecewise bicubic surface with shape parameters [J]. Computer and Graphics, 2001, 25(4): 463-481.

二级参考文献15

  • 1Duan Qi,Computer Graphics,1998年,22卷,4期,478页
  • 2Barsky B A.The β-spline:A local representation based on shape parameters and fundamental geometric measure[D].Salt Lake:University of Utah,1981.
  • 3Dierck P,Tytgat B.Generating the Bézier point of β-spline curve[J].Computer Aided Geometric Design,1989,6(2):279-291.
  • 4Foley T A.Local control of interval tension using weighted splines[J].Computer Aided Geometric Design,1986,3(2):281-294.
  • 5Nielson G M.Rectangular u-splines[J].IEEE Computer Graphics and Application,1986,6(1):35-40.
  • 6Nielson G M.CAGD's Top Ten:What to watch[J].IEEE Computer Graphics and Application,1993,13(1):35-37.
  • 7Piegl L.On NURBS:A survey[J].IEEE Computer Graphics andApplication,1991,11(5):55-71.
  • 8Schmidt J W,HeB W.Positivity of cubic polynomials on intervals and positive spline interpolation[J].BIT,1988,28(2):340-352.
  • 9Gregory J A,Sarfraz M,Yuen P K.Interactive curve design using C2 rational splines[J].Computer and Graphics,1994,18(2):153-159.
  • 10Sarfraz M.Cubic spline curves with shape control[J].Computer and Graphics,1994,18(5):707-713.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部