期刊文献+

采用牛顿迭代双侧逼近误差序列的分形艺术图形设计 被引量:3

The Design of Fractal Art Graphics Based on Two-Side Approaching Error Series of Newton Iteration
下载PDF
导出
摘要 提出解实数方程Newton迭代双侧逼近序列的构造方法,精确解介于两个序列之间,这样可以通过两个近似解来估计逼近精确解的程度,给误差分析带来很大方便。把双侧逼近和误差估计扩展到复域上,根据复域上迭代生成的误差序列并结合着色算法和特效处理算法生成美丽的分形艺术图形。 A two-side approaching series based on Newton iteration method is presented to obtain solution of real functions. The exact solution is located between the two series, so the extent that the approximate solution approached exact solution can be estimated with the two approaching series, and it is convenient to analyze errors. Then the two-side approaching series and error estimations are extended to complex domain. With algorithms of coloring and special effective processing, lots of beautiful fractal art graphics are created based on the error series that are generated through iterations from complex domain.
出处 《工程图学学报》 CSCD 北大核心 2009年第3期146-153,共8页 Journal of Engineering Graphics
基金 安徽省教育厅自然科学基金资助项目(2005KJ366zc)
关键词 计算机应用 分形艺术图形 牛顿迭代 双侧逼近 着色算法 computer application fractal art graphics Newton iteration two-side approaching coloring algorithm
  • 相关文献

参考文献6

  • 1李忠.迭代浑沌分形[M].北京:科学出版社,2007.36-45.
  • 2刘华杰.分形艺术[M/CD].长沙:湖南电子音像出版社,1997..
  • 3JohnHMathews KurtisDFink 陈渝 周璐 钱方 都志辉 甘四清 周健 .数值方法(MATLAB版)[M].北京:电子工业出版社,2002.340-351.
  • 4Cartwright, Julyan H E. Newton Maps: Fractal from Newton's method for the circle map [J]. Computer & Graphics, 1999, 23(4): 608-613.
  • 5Walter D J. Computer art representing the behavior of the Newton-raphson method [J]. Computer & Graphics, 1993, 17(4): 487-488.
  • 6蒋长锦.科学计算与C程序集[M].合肥:中国科技大学出版社,1998

共引文献5

同被引文献12

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部