摘要
压缩机组振源较多,振动信号背景噪声强烈、干扰大,通过检测振动信号细微特征变化识别故障征兆异常困难。为此,从系统特性的角度出发,选择信息熵及分形维数作为特征参数,提取气阀无故障、轻微漏气与严重漏气3种典型故障信号特征,采用聚类分析方法来判断气阀故障。应用表明,较之传统的诊断方法,基于谱熵及分形理论的诊断方法具有故障特征提取工作量小、容错性强、准确率高的特点。
The compressor operating process is unstable and the operating condition is different,so the traditional fault diagnosis by detecting the faulty symptom is extremely difficult. The information entropy and fractal theory were used to analyze the system behavior of the signal under three representative different states,and then apply cluster analysis to diagnose the failure. The application demonstrates this method has more advantages than the conventional methods,such as simple operation,fault-tolerance,high accuracy.
出处
《天然气工业》
EI
CAS
CSCD
北大核心
2009年第6期104-106,共3页
Natural Gas Industry
基金
教育部新世纪优秀人才支持计划资助项目(编号:NCET.05.0110)
中国石油天然气集团公司创新基金(编号:07E1005)的资助
关键词
压缩机
气阀
故障分析
高频谱熵
分形维数
compressor valve,fault diagnosis,high frequency spectrum entropy,fractal dimension