期刊文献+

求解结构自振频率的精细传递矩阵法 被引量:11

Precise transfer matrix method for resolving natural frequencies of structures
下载PDF
导出
摘要 将高精度的精细积分法和力学概念清晰的传递矩阵法结合起来,以微分方程和矩阵分析理论为基础,提出了一种新的精细传递矩阵形式,并用于求解结构自振频率。推导了该方法的计算公式。与传统的传递矩阵法相比,无需对微分方程进行求解,只需按照迭代公式进行计算,就可以得到所需要的传递矩阵。提出的方法虽然是条件稳定的,但是稳定性条件极易满足。算例表明本方法具有较高的精度和效率。可以对任意结构进行自振频率求解。 This paper combines the high-precision integration with the clear concept of transfer matrix method, based on the theory of differential equations and matrix analysis, provides a new precise transfer matrix form, then it is applied to solve the natural frequencies of a structure. The calculation formula of the method is derived. Comparing with the traditional transfer matrix method, this method needs not to solve the differential equations, but just follows the iterative formula to get the necessary transfer matrix, and based on the search method it can to get the natural frequencies of structures. Although the method is conditional stable, the stable condition is easy to meet. Examples show that this method is effective and high-precision. It can solve the natural frequency of any structure.
出处 《世界地震工程》 CSCD 北大核心 2009年第2期140-145,共6页 World Earthquake Engineering
基金 陕西省自然科学基础研究计划项目(2005E236) 陕西省重点学科建设专项资金资助项目(05JK235)
关键词 精细传递矩阵法 指数矩阵运算 控制微分方程 自振频率 precise integration transfer matrix method index matrix operation control differential equations natural frequency
  • 相关文献

参考文献4

二级参考文献16

  • 1钟万勰,林家浩.陀螺系统与反对称矩阵辛本征解的计算[J].计算结构力学及其应用,1993,10(3):237-253. 被引量:13
  • 2钟万勰.结构动力方程的精细时程积分法[J].大连理工大学学报,1994,34(2):131-136. 被引量:510
  • 3钟万勰.子域精细积分及偏微分方程数值解[J].计算结构力学及其应用,1995,12(3):253-260. 被引量:86
  • 4[5]Chung Jintai,Gregory M.Hulbert.A Family of Single-Step Houbolt Time Integration Algorithms for Structural Dynamics.Computer Methods in Applied Mechanics and Engineering,1994,118(1/2):1-11
  • 5Bathe KJ,Wilson EL.Numerical Methods in Finite ElementAnalysis.Prentice-Hall,Englewood Cliffs,N.J.1976
  • 6Golley BW.A time-stepping procedure forstructural dynamics using Gauss point collocation.it International Journal for Numerical Methods in Engineering,1996,39:3985~3998
  • 7Riff R,Barch M.Time finite element discretization ofHamilton's Law of varying action.It AIAA Journal,1984,22:1310~1318
  • 8Argyris JH,Vaz LE,Willam KJ.Higher order methods for transient diffusion analysis.it Computer Methods in Applied Mechanics and Engineering,1977,12:243~278
  • 9Kujawski J,Gallagher RH.A generalized least-squares family ofalgorithms for transient dynamic analysis.it Earthquake Engineering and Structural Dynamics,1989,18:539~550
  • 10Tarnow N,Simo JC.How to render secondorder accurate time stepping algorithms fourth order accurate whileretaining the stability and conservation properties.it Computer Methods in Applied Mechanics andEngineering,1994,115:233~252

共引文献232

同被引文献78

引证文献11

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部