期刊文献+

基于SVM的柔性生产模式下生产过程质量智能预测 被引量:13

Intelligent prediction for process quality of flexible manufacturing system based on SVM
原文传递
导出
摘要 提出了一种基于支持向量机(SVM)的柔性生产模式下生产过程质量智能预测方法.该方法基于结构风险最小化,能较好地解决小样本学习问题,避免了人工神经网络等智能方法在训练时所表现出来的过学习、泛化能力弱等缺点.实验表明:该方法具有预测精度高、速度快、容易实现等优点,为柔性生产模式下的生产过程质量预测提供了一种切实有效的方法. Traditional method for quality prediction of producing process can't fit flexible manufacturing system (FMS) well, which can only make products in small batch. It is difficult for this method to predict the future product quality of FMS quickly and accurately. The paper puts forward a new intelligent prediction method based on support vector machine (SVM) for process quality of FMS. it can solve the small-batch learning better and avoid such disadvantages as over-training, weak normalization capability, ect., which artificial neural networks prediction has, because it is based on structure risk minimization. The application example shows that the model is higher in accuracy and learning speed, easier to realize and so on. So, it is more suitable for quality prediction of producing process of FMS.
作者 孙林 杨世元
出处 《系统工程理论与实践》 EI CSCD 北大核心 2009年第6期139-146,共8页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70672096)
关键词 柔性生产模式 过程质量 支持向量机 预测 flexible manufacturing system process quality support vector machine prediction
  • 相关文献

参考文献9

  • 1马建军,王晋.柔性化生产的理性思辨[J].商场现代化,2007(11X):87-88. 被引量:5
  • 2Yang S Y. Information technology's effect on quality engineering innovation facing the 21st century[C]//The Proceeding of the Third International Conference on Management, 1998: 153-163.
  • 3MEtaxiotis K, Kagiannas A, Askounis A, et al. Artificial intelligence in short term electric load forecasting: A state-of-the-art survey for the research[J]. Energy Conversion and Management, 2003, 44: 1525-1534.
  • 4Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Spring-Verlag, 1999.
  • 5Vapnik V N. An overview of statistical learning theory[J]. IEEE Transaction Neural Networks, 1999, 10(5): 988-999.
  • 6Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[C]// Neural Processing Letters, 1999, 9(3): 293-300.
  • 7Suykens J A K, Vandewalle J. Sparse least squares support vector machine classifiers[C]//Burges Belgium: European Symposium on Artificial Neural Networks, 2000: 37-42.
  • 8张庆茂,刘喜明,钟敏霖,刘文今.送粉式激光熔覆过程激光有效能量的表征方法[J].稀有金属材料与工程,2003,32(7):550-553. 被引量:8
  • 9徐大鹏,周建忠,郭华锋,季霞.基于进化神经网络的激光熔覆层质量预测[J].激光技术,2007,31(5):511-514. 被引量:7

二级参考文献13

  • 1刘继常,李力钧.激光熔覆成形金属薄壁结构的试验研究[J].机械工程学报,2004,40(10):185-188. 被引量:15
  • 2朱蓓蒂,曾晓雁,陶曾毅,崔昆.激光工艺参数对熔覆层稀释率的影响[J].材料研究学报,1994,8(4):315-318. 被引量:18
  • 3姬生钦,李鹏,曾晓雁.激光熔覆直接制造金属零件的组织及力学性能分析[J].激光技术,2006,30(2):130-132. 被引量:10
  • 4刘丽文 等.现代生产管理学[M].北京:清华大学出版社,1994..
  • 5王春敏.稀有金属材料与工程,2003,32(3):197-197.
  • 6Vetter P A, Engel Th, Fontaine J. Laser Cladding : the Relevant Parameters for Process Control [J]. SPIE, 1994,2 207:452 - 462.
  • 7Zeng Xiaoyan, Tao Zengyi, Zhu Beidi. Investigation of Laser Cladding Ceramic Metal Composite Coatings Processing Modes and Mechanisms[J]. Surface and Coatings Technology, 1996,79(2): 209 - 217.
  • 8Picasso M, Marsden C F, Wagniere J D, Frenk A, Rappaz M.A Simple but Realistic Model for Laser Cladding[J ] . Metallurgical and Materials Transactions B, 1994, 5B (2): 281 - 291.
  • 9熊谷智德.生产经管论.日本:放松大学教育振兴会,1997.
  • 10刘丽文.生产与运作管理(第二版).北京:清华大学出版社,2004.

共引文献17

同被引文献162

引证文献13

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部