期刊文献+

关于稀疏最小二乘支持向量回归机的改进剪枝算法 被引量:3

Improved pruning algorithms for sparse least squares support vector regression machine
原文传递
导出
摘要 对于含有奇异点的系统而言,由于一般的剪枝算法不能成功抑制系统中的奇异点,在借鉴支持向量分类机选择支持向量方法的基础上,提出了改进的剪枝算法.改进的剪枝算法能成功抑制系统中的奇异点,减少支持向量的数目,增强最小二乘支持向量回归机的泛化能力.另外,仿真实例也验证了改进剪枝算法的有效性.在不含有奇异点系统中,改进的剪枝算法退化成了一般的剪枝算法,也就是说一般的剪枝算法是改进剪枝算法的一个特例. For a system with outliers, the common pruning algorithms don't oppress outliers. Therefore, the improved pruning algorithms are proposed based on the selecting support vectors method of support vector classifier. The improved pruning algorithms not only oppress outliers but also reduce the number of support vectors and boost the generalization performance of least squares support vector regression machine, and the simulation example corroborates the efficacy of the improved pruning algorithms. Moreover, the improved pruning algorithms can also be applied to a system without outliers, and in this situation, the improved pruning algorithms degenerate into the common pruning algorithms, i. e., the common pruning algorithms are special cases of the improved pruning algorithms.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2009年第6期166-171,共6页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(50576033)
关键词 支持向量分类机 最小二乘支持向量回归机 剪枝算法 support vector classifier least squares support vector regression machine pruning algorithm
  • 相关文献

参考文献14

  • 1Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
  • 2Ubeyli E D. Multiclass support vector machines for diagnosis of erythematoJsquamous diseases[J]. Expert Systems with Applications, 2008, 35(4): 1733-1740.
  • 3Wang W J, Men C Q, Lu W Z. Online prediction model based on support vector machine[J]. Neurocomputing, 2008, 71(4-6): 550-558.
  • 4Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(2): 293-300.
  • 5Suykens J A K, Van Gestel T, de Brabanter J, et al. Least squares support vector machines[M]. Singapore: World Scientific, 2002.
  • 6Suykens J A K, de Brabanter J, Lukas L, et al. Weighted least squares support vector machines: Robustness and sparse approximation[J]. Neurocomputing, 2002, 48(1 4): 85-105.
  • 7Suykens J A K, Lukas L, Vandewalle J. Sparse approximation using least squares support vector machines[C]// Proceeding of IEEE International Symposium on Circuits and System, Piscataway, N J, USA, 2000: 757-760.
  • 8de Kruif B J, de Vries T J A. Pruning error minimization in least squares support vector machines[J]. IEEE Transaction on Neural Networks, 2003, 14(3): 696-702.
  • 9Hoegaerts L, Suykens J A K, Vandewalle J, et al. A comparison of pruning algorithms for sparse least squares support vector machines[C]//Proceeding of International Conference on Neural Information Processing, Berlin, Germany: Springer-Verlag, 2004: 1247-1253.
  • 10Kuh A, Wilde P D. Comments on "pruning error minimization in least squares support vector machines" [J]. IEEE Transactions on Neural Networks, 2007, 18(2): 606-609.

同被引文献32

  • 1李道国,苗夺谦,俞冰.决策树剪枝算法的研究与改进[J].计算机工程,2005,31(8):19-21. 被引量:30
  • 2甘良志,孙宗海,孙优贤.稀疏最小二乘支持向量机[J].浙江大学学报(工学版),2007,41(2):245-248. 被引量:27
  • 3陶少辉,陈德钊,胡望明.基于CCA对LSSVM分类器的稀疏化[J].浙江大学学报(工学版),2007,41(7):1093-1096. 被引量:2
  • 4王定成,姜斌.在线稀疏最小二乘支持向量机回归的研究[J].控制与决策,2007,22(2):132-137. 被引量:24
  • 5Aezel, Peake, Hardy. Designing Capacity-building in e-learning Ex- pertise:Challenges and Strategies[ J ]. Computers and Education Ar- chive,2008,50(2) :499 - 510.
  • 6Gladun, Rogushina, Fernandez. An Application of Intelligent Tech- niques and Semantic Web Technologies in Learning Environments [ J ]. Expert Systems with Applications, 2009.36 ( 2 ) : 1922 -1931.
  • 7E Kontopou|os, D Vrakas, F Kokkoras. An Ontology-based Planning System for E-course Generation [ J ]. Expert Systems with Applica- tions ,2009 ( 35 ) :398-406.
  • 8Yu-Liang Chi. Ontology-based Curriculum Content sequencing Sys- tem with Semantic Rules [ J]. Expert Systems with Applications, 2009 ( 36 ) : 7838-7847.
  • 9RuPert. A Dialogic under Standing of the Relationship between CSCL and Teaching Thinking Skills [ J ]. Computer Supported Col laborative Learning,2006 ( 1 ) : 143-157.
  • 10Chi, Y. L. Ontology-based Curriculum Content Sequencing System with Semantic Rules [J]. Expert Systems with Applications,2009, 36 ( 4 ) : 7838 -7847.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部