期刊文献+

非平衡技术在高速网络入侵检测中的应用 被引量:3

Application of unbalanced data approach in high-speed network intrusion detection
下载PDF
导出
摘要 针对现有的高速网络入侵检测系统丢包率高、检测速度慢以及检测算法对不同类型攻击检测的非平衡性等问题,提出了采用两阶段的负载均衡策略的检测模型。在线检测阶段对网络数据包按协议类型进行分流的检测,离线建模阶段对不同协议类型的数据进行学习建模,供在线部分检测。在讨论非平衡数据处理的各种采样技术基础上,采用改进后的过抽样少数样本合成过采样技术(SMOTE)对网络数据进行预处理,采用AdaBoost、随机森林算法等进行分类。另外对特征选取等方面进行了实验,结果表明SMOTE过抽样可提高各少数类的检测,随机森林算法分类效果好而且建模所用的时间稳定。 In view of the current problems of high-speed network intrusion detection system, such as high packet loss rate, slow pace of testing for attacks and unbalanced data for detection, this paper proposed a new two-stage strategy with load balancing intrusion detection model. In the on-line phase, the system captured the packets from network and split into small ones according to the protocol type, and then detected through each sensor. In the off-line phase, training dataset was used to build module which can detect intrusion. The authors discussed different approaches to unbalanced data, empirically evaluated the SMOTE over-sampling approaches and classified with AdaBoost and random forests algorithm. The experimental results show that SMOTE and the AdaBoost Algorithm by using random forests as weak learner not only can provide better performance to small class, but also has steady model building time.
出处 《计算机应用》 CSCD 北大核心 2009年第7期1806-1808,1812,共4页 journal of Computer Applications
基金 山西省青年自然科学基金资助项目(2008021025)
关键词 高速网络 入侵检测 非平衡数据 少数样本合成过采样技术 集成学习 ADABOOST算法 随机森林算法 high-speed network intrusion detection unbalanced data Synthetic Minority Over-sampling Technique (SMOTE) ensemble learning AdaBoost algorithm random forests algorithm
  • 相关文献

参考文献9

  • 1赵月爱,彭新光.高速网络环境下的入侵检测技术研究[J].计算机工程与设计,2006,27(16):2985-2987. 被引量:15
  • 2赵月爱,陈俊杰,穆晓芳.集成学习在网络入侵检测中的实验研究[J].计算机工程,2009,35(23):124-126. 被引量:4
  • 3KRUEGEL C, VALEUR F, VIGNA G, et al. Stateful intrusion detection for high-speed networks[ C] // Proceedings of the IEEE Symposium on Security and Privacy. Washington. DC. USA: IEEE Computer Society, 2002:285 -293.
  • 4XINIDIS K, CHARITAKIS I, ANTONATOS S, et al. An active splitter architecture for intrusion detection and prevention[ J]. IEEE Transactions on Dependable and Secure Computing, 2006, 3(1) : 31 -44.
  • 5ZHANG J, ZULKERNINE M. A hybrid network intrusion detection technique using random forests availability[ C]//Proceedings of the 1 st International Conference on Availability, Reliability and Security. NewYork: IEEE, 2006:262 -269.
  • 6CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic Minority Oversampling Technique[ J]. Journal of Artificial Intelligence Research, 2002(16) : 321 - 357.
  • 7王珏,周志华,周傲英.机器学习及其应用[M].北京:清华大学出版社,2006.
  • 8FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to. Boosting[ C]// Proceedings of the 2nd European Conference on Computational learning Theory. London: Springer-Verlag, 1996:23 -37.
  • 9BREIMAN L. Random forests[ J]. Machine Learning, 2001, 45 (1): 5 - 32.

二级参考文献16

  • 1李仁发,李红,喻飞,徐成.入侵检测系统中负载均衡研究与仿真[J].系统仿真学报,2004,16(7):1444-1449. 被引量:9
  • 2杨武,云晓春,李建华.一种基于强化规则学习的高效入侵检测方法[J].计算机研究与发展,2006,43(7):1252-1259. 被引量:12
  • 3赵月爱,彭新光.高速网络环境下的入侵检测技术研究[J].计算机工程与设计,2006,27(16):2985-2987. 被引量:15
  • 4Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: Synthetic Minority Over-sampling Technique[J]. Journal of Artificial Intelligence Research, 2002, 16(6): 321-357.
  • 5Freund Y, Schapire R E. A Decision-theoretic Generalization of On-line Learning and an Application to Boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139.
  • 6Kruegel C,Valeur F,Vigna G,et al.Stateful intrusion detection for high-speed networks[C].Washington.DC.USA:Proceedings of the IEEE Symposium on Security and Privacy(SP),IEEE Computer Society,2002.285-293.
  • 7Alex Vrenios.LINUX集群体系结构[M].北京:机械工业出版社,2002.1-4.
  • 8Dittmann G,Herkersdorf A.Network processor load balancing for high-speed links[C].San Diego,California:Proceedings of the 2002 International Symposium on Performance Evaluation of Computer and Telecommunication Systems(SPECTS 2002),SCS,2002.727-735.
  • 9Charitakis I,Anagnostakis KG,Markatos E.An active traffic splitter architecture for intrusion detection[C].Orlando:MASCOTS 2003,IEEE Computer Society,2003.238-241.
  • 10Cao Zhi-ruo,Wang Zheng,Zegura E.Performance of hashingbased schemes for Internet load balancing[C].Piscataway:Proceedings of IEEE INFOCOM,IEEE Computer and Communications Societies,2000.332-341.

共引文献49

同被引文献22

  • 1张玉,方滨兴,张永铮.高速网络监控中大流量对象的识别[J].中国科学:信息科学,2010,40(2):340-355. 被引量:11
  • 2龚俭,彭艳兵,杨望,刘卫江.基于BloomFilter的大规模异常TCP连接参数再现方法[J].软件学报,2006,17(3):434-444. 被引量:24
  • 3Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: Synthetic Minority Over-sampling Technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.
  • 4Tomek I. Two Modifications of CNN[J]. IEEE Transactions on Systems, Man and Communications, 1976, 6(11): 769-772.
  • 5Kubat M, Matwin S. Addressing the Curse of Imbalanced Training Sets: One Sided Selection[C]//Proc. of the 14th International Conference on Machine Learning. San Francisco, USA: Morgan Kaufmann. 1997.
  • 6Laurikkala J. Improving Identification of Difficult Small Classes by Balancing Class Distribution[C]//Proc. of the 8th Conference on AI in Medicine in Europe: Artificial Intelligence Medicine. London, UK: Springer-Verlag, 2001.
  • 7Chawla N V, Bowyer K W, Hall L O, et al.SMOTE: synthetic minodty over-sampling technique[J].Journal of Artificial Intelli- gence Research,2002,16:321-357.
  • 8Tomek I.Two modifications of CNN[J].IEEE Transactions on Systems,Man and Communications, 1976,6(11) :769-772.
  • 9Kubat M, Matwin S.Addressing the curse of imbalanced train- ing sets:One sided selection[C]//Proceedings of the 14th Interna- tional Conference on Machine Learning.San Francisco: Morgan Kaufrnarm, 1997:179-186.
  • 10Laurikkala J.Improving identification of difficult small classes by balancing class distribution[C]//Proceedings of the 8th Con- ference on AI in Medicine.Europe: Artificial Intelligence Medicine, London, UK: Springer-Verlag, 2001 : 63 -66.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部