期刊文献+

多用户连续k近邻查询多线程处理技术研究 被引量:5

Research on multi-threading processing of concurrent multiple continuous k-nearest neighbor queries
下载PDF
导出
摘要 针对面向移动对象集的多用户连续k近邻查询处理,提出了基于多线程的多用户连续查询处理(MPMCQ)框架,采用流水线处理策略,将连续查询处理过程分解为可同时作业的查询预处理、查询执行以及查询结果分发三个执行阶段,利用多线程技术来提高多用户连续查询处理的并行性;基于MPMCQ框架和移动对象内存格网索引,提出了基于多线程的连续k近邻查询处理(MCkNN)算法。实验结果与分析表明,基于MPMCQ框架的MCkNN算法在多核平台上优于CPM、YPK-CNN等现有算法。 To deal with the multiple concurrent continuous k nearest neighbors queries towards moving objects, the proposed a Multi-threading Processing of Multiple Continuous Queries (MPMCQ) framework, which adopted pipeline strategy and departed the continuous query processing into three simultaneous stages: query processing, query executing and query results dispatching to improve the parallelism with muhi-threading technology. Based on MPMCQ framework and grid index for moving objects, a Multi-threading processing of Continuous k Nearest Neighbor queries (MCkNN) algorithm was also presented. Experimental results and analysis show that MCkNN algorithm outperforms CPM, YPK-CNN, etc.
出处 《计算机应用》 CSCD 北大核心 2009年第7期1861-1864,共4页 journal of Computer Applications
基金 中国博士后科学基金资助项目(20080431384) 国家863计划项目(2007AA12Z208)
关键词 连续K近邻查询 多核 多线程 流水线策略 Continuous k Nearest Neighbor queries queries multi-core multi-thread pipeline strategy
  • 相关文献

参考文献13

  • 1TAO YU-FEI, PAPADIAS D. Spatial queries in dynamic enviroment[ J]. ACM Transactions on Database Systems, 2003, 28(2) : 101 - 139.
  • 2SALTENIS D, JENSEN C S. Indexing the positions of continuously moving objects[ J]. ACM SIGMOD Record, 2000, 29 (2) : 331 - 342.
  • 3BENETIS R, JENSEN C S, KARCIAUSKAS G, et al . Nearest neighbor and reverse nearest neighbor queries for moving objects [ EB/OL]. [ 2008 - 11 -20] . http://www, cs. aau. dk/- tbp/ Teaching/DAT5 EO 1/benetis. pdf.
  • 4TAO YU-FEI, PAPADIAS D. Time-parameterized queries in spatiotemporal databases[ C]// Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2002:334 - 345.
  • 5IWERKS G S, SAMET H, SMITH K. Continuous k-nearest neighbor queries for continuously moving points with updates[ C]//Proceedings of the 29th International Conference on Very large Data Bases. Berlin, Germany: VLDB Endowment, 2003:512-523.
  • 6MOKBEL M F, XIONG XIAOPENG, AREF W G. SINA: Scalable incremental processing of continuousqueries in spatiotemporal databases[ EB/OL]. [ 2008 - 11 -20]. http://www, cs. purdue, edu/ homes/mokbel/SINA-SIGMOD04, pdf.
  • 7HU HAIBO, XU JIANLIANG, LEE D L. A generic framework for monitoring continuous spatial queries over moving objects[ C]//Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, New York: ACM, 2005:479 -490.
  • 8XIONG XIAOPENG, MOKBEL M F, AREF W G. SEA - CNN : Scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases[ EB/OL]. [ 2008 - 11 - 20]. http://www - users, es. umn. edu/- mokbel/papers/icde05, pdf.
  • 9YU XIAOHUI, PU K Q, KOUDAS N. Mointoring k-nearest neighbour queries over moving objects[ C]// Proceedings of the 21st International Conference on Data Engineering. Washington, DC: IEEE Computer Society, 2005:631 - 642.
  • 10MOURATIDIS K, HADJIELEFTHERIOU M, PAPADIAS D. Conceptual Partitioning: An efficient method for continuous nearest neighbor monitofirtg[ C] //Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2005:634 -645.

同被引文献48

  • 1孙圣力,林硕.一个高效的连续k近邻查询改进算法[J].计算机研究与发展,2013,50(S1):80-89. 被引量:2
  • 2张明波,陆锋,申排伟,程昌秀.R树家族的演变和发展[J].计算机学报,2005,28(3):289-300. 被引量:95
  • 3Wolfson Ouri.Moving objects information management:The database challenge//Proceedings of the International Workshop on Next Generation Information Technologies and Systems.Caesarea,Israel,2002:75-89.
  • 4Xiong Xiaopeng,Mohamed F M,Walid G A.SEA-CNN:Scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases//Proceedings of the International Conference on Data Engineering.Tokyo,Japan,2005:643-654.
  • 5Yu Xiaohui,Ken Q P,Nick Koudas.Mointoring k-nearest neighbor queries over moving objects//Proceedings of the International Conference on Data Engineering.Tokyo,Japan,2005:631-642.
  • 6Mouratidis K,Hadjieleftheriou M,Papadias D.Conceptual partitioning:An efficient method for continuous nearest neighbor monitoring//Proceedings of the International Conference on Management of Data.Baltimore,USA,2005:634-645.
  • 7Hu Haibo,Xu Jianliang,Dik L L.A generic framework for monitoring continuous spatial queries over moving objects//Proceedings of the International Conference on Management of Data.Baltimore,USA,2005:479-490.
  • 8Hsueh Y L,Zimmermann R,Wang Haojun et al.Partition-based lazy updates for continuous queries over moving objects//Proceedings of the International Symposium on Advances in Geographic Information Systems.Seattle,USA,2007.
  • 9Mouratidis K,Yiu M L,Papadias D et al.Continuous nearest neighbor monitoring in road networks//Proceedings of the International Conference on Very Large Data Bases.Seoul,Korea,2006:43-54.
  • 10Demiryurek U,Banaei K F,Shahabi C.Efficient continuous nearest neighbor query in spatial networks using euclidean restriction//Proceedings of the International Symposium on Spatial and Temporal Database.Aalborg,Denmark,2009:25-43.

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部