期刊文献+

带马尔可夫切换的Q过程的遍历性(英文)

Ergodicity for Q-Processes with Markovian Switching
下载PDF
导出
摘要 本文应用Foster-Lyapunov不等式和耦合方法,研究了一类带马尔可夫切换的Q过程的指数遍历性和强遍历性;同时,也构造了一些关于这类带马尔可夫切换的Q过程的耦合,并证明某些耦合是成功的。 Exponential ergodicity and strong ergodicity for a form of Q-processes with Markovian switching axe considered by virtue of the Foster-Lyapunov inequality and the coupling methods respectively. Meanwhile, some couplings of this form of Q-processes with Maxkovian switching axe constructed, and a coupling is proved to be successful.
作者 席福宝
出处 《应用概率统计》 CSCD 北大核心 2009年第3期225-237,共13页 Chinese Journal of Applied Probability and Statistics
基金 supported in part by the National Natural Science Foundation of China(10671037).
关键词 遍历性 Q过程 马尔可夫切换 Foster-Lyapunov不等式 耦合. Ergodicity, Q-process, Markovian switching, Foster-Lyapunov inequality, coupling.
  • 相关文献

参考文献16

  • 1Chen, M.F., From Markov Chains to Non-Equilibrium Particle Systems, World Scientific, Singapore, 1992.
  • 2Zheng, J.L. and Zheng, X.G., Martingale approach for Q-processes, Chinese Kexue Tongbao (In Chinese), 31(1986), 1296-1298.
  • 3Stroock, D.W. and Varadhan, S.R.S., Multidimensional Diffusion Processes, Springer-Verlag, New York, 1979.
  • 4Pinsky, R. and Scheutzow, M., Some remarks and examples concerning the transience and recurrence of random diffusions, Ann. Inst. Henri Poincare, 28(1992), 519-576.
  • 5Basak, G.K., Bisi, A. and Ghosh, M.K., Stability of a random diffusion with linear drift, J. Math. Anal. Appl., 202(1996), 604-622.
  • 6Mao, X.R., Stability of stochastic differential equations with Markovian switching, Stoch. Proc. Appl., 79(1999), 45-67.
  • 7Xi, F.B., Stability for a random evolution equation with Gaussian perturbation, J. Math. Anal. Appl., 2722002, 458-472.
  • 8Yuan, C.G. and Mao, X.R., Asymptotic stability in distribution of stochastic differential equations with Markovian switching, Stoch. Proc. Appl., 103(2003), 277-291.
  • 9Yao, J.F. and Attali, J.G., On stability of nonlinear AR processes with Markov switching, Adv. Appl. Probab., 32(2000), 394-407.
  • 10Mao, R.H., Strong ergodicity for Markov processes by coupling methods, J. Appl. Probab., 39(2002), 839-852.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部