期刊文献+

基于小波函数的核主元特征约简方法研究 被引量:5

Feature reduction method based on wavelet kernel-PCA
下载PDF
导出
摘要 提出一种基于小波核函数的核主元特征约简方法。核函数是核主元分析的关键,将Mexican hat小波函数引入核主元分析中,以增强核主元分析的非线性映射能力。用转子在正常、油膜涡动、不平衡和径向碰摩状态下的实验数据对该方法进行了检验,比较了主元分析、核主元分析与小波核主元分析的效果。结果表明,小波核主元分析方法能有效地区分转子故障模式,更适合于故障诊断中的非线性特征约简。 A feature reduction method based on wavelet kernel-PCA (WKPCA) is presented. Mexican hat wavelet kernel is introduced to enhance nonlinear mapping capability of kernel-PCA. The experimental data sets of rotor operating under four conditions: normal, oil whirling, rub and unbalance are used to test the WKPCA method. The feature reduction results of WKPCA are compared with that of PCA and KPCA method. The results indicate that WKPCA can classify the rotor fault modes efficiently. The WKPCA is more suitable for nonlinear feature reduction in the field of fault diagnosis.
出处 《振动工程学报》 EI CSCD 北大核心 2009年第3期287-291,共5页 Journal of Vibration Engineering
基金 国家自然科学基金重点资助项目(50335030) 国家自然科学基金资助项目(50675140) 国家“863”高技术研究发展计划(2006AA04Z175)
关键词 核主元分析 小波核 特征约简 故障诊断 kernel PCA wavelet kernel feature reduction fault diagnosis
  • 相关文献

参考文献8

  • 1Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998,10(5): 1 299-1 319.
  • 2Ganey J L, Block W M, Jenness J S, et al. Mexican spotted owl home range and habitat use in pine-oak forest:implications for forest management[J]. Forest Science, 1999,45(1) : 127-135.
  • 3李巍华,廖广兰,史铁林.核函数主元分析及其在齿轮故障诊断中的应用[J].机械工程学报,2003,39(8):65-70. 被引量:53
  • 4John Shawe-Taylor N C. Kernel Methods for Pattern Aanlysis [M]. Cambridge: Cambridge University Press, 2004.
  • 5Zhang L, Zhou W, Jiao L. Wavelet support vector machine [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004,34(1): 34-39.
  • 6Smola A J, Scholkopf B, Muller K R. The connection between regularization operators and support vector kernels[J]. Neural Networks, 1998,11 (4): 637- 649.
  • 7于振华,蔡远利.基于在线小波支持向量回归的混沌时间序列预测[J].物理学报,2006,55(4):1659-1665. 被引量:15
  • 8Wen X, Xu X, Cai Y. Least-squares wavelet kernel method for regression estimation[A]. International Conference on Natural Computation 2005[C]. Changsha, 2005:582-591.

二级参考文献11

共引文献66

同被引文献43

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部