期刊文献+

基于人工免疫的多目标优化研究综述 被引量:6

Overview of multi-objective optimizations based on artificial immune
下载PDF
导出
摘要 免疫启发的多目标优化算法近来逐渐受到研究者的关注,免疫系统由于其固有优点成为继进化算法之后又一个成功的启发式搜索策略研究方向。首先给出了多目标优化和免疫算法的基础概念和常用术语,深入分析了现有的各种基于免疫网络的免疫优化算法和基于克隆选择的免疫优化算法,阐述了算法的特点及改进,重点描述了免疫优化算法在实际应用中的研究;在介绍了免疫优化算法的收敛性理论证明和免疫优化算法的评价方法之后,阐述了免疫优化算法目前的研究热点和趋势。 Immune-based heuristic search algorithms are gaining more and more attention from researchers. Immune algorithms have become another successful heuristic search research field because of its inner good characteristics. This paper first introduced the basics and constantly used terms of multi-objective optimizations and artificial immune systems, and then illustrated existing famous immune optimization algorithms, which respectively based on immune network and elonal selection. Especially it concentrated on the application of immune algorithms. After providing theoretical ways of proving the convergence of immune optimization algorithms, and giving several frequently cited comments and quality indicators for immune optimization algorithms evaluation, gave the hot-spot of immune optimization and future research trends.
作者 王震 陈云芳
出处 《计算机应用研究》 CSCD 北大核心 2009年第7期2422-2426,共5页 Application Research of Computers
基金 南京邮电大学青蓝计划基金资助项目(NY207081)
关键词 多目标优化 人工免疫 免疫网络 克隆选择 multi-objective optimizations artificial immune immune network clonal selection
  • 相关文献

参考文献35

  • 1PARETO V. Cours deconomie politique, volume I and II [ M ] Paris: Guillaumin, 1896.
  • 2FARMER J D, PACKARD N H, PERELSON A S. The immune sys- tem, adaption, and machine learning[ J ]. Physica D, 1986,2 ( 1- 3) :187-204.
  • 3KRISHNA K K, NEIDHOEFER J. Immunised neurocontrol[ J]. Expert Systems with Application, 1997,13(3) :201-214.
  • 4HOFFMANN G W. A neural network model based on the analogy with the immune system [ J ]. Theoretical Biology, 1986,122 ( 1 ) : 33- 67.
  • 5DASGUPTA D. Artificial neural networks and artificial immune system: similarities and differences [ C ]//Proc of IEEE International Conference on Systems, Man, and Cybernetics. 1997:873-878.
  • 6KtM J, BENTLEY P. Towards an artificial immune system for network intrusion detectign: an investigation of clonal selection with a negative selection operator [ C ]//Proc of Congress on Evolutionary Computation. 2001 : 1244-1252.
  • 7KIM J, BENTLEY P J. A model of gene library evolution in the dynamic clonal selection algorithm [ C]//Proc of the 1st International Conference on Artificial Immune Systems. 2002:9-11.
  • 8TIMMIS J, NEAL M, HUNT J. An artificial immune system for data analysis [ J ]. Biosystems, 2000,55 ( 1-3 ) : 143-150.
  • 9COELLO C C A, VELD-HUIZEN D A van, LAMONT G B, et al. Evolutionary algorithms for solving multi-objective problems [ M ]. Berlin: Springer, 2002.
  • 10SRINIVAS N, DEB K. Multi-objective optimization using nondominated sorting in genetic algorithms[ J]. Evolutionary Computation, 1994, 2(3) :221-248.

二级参考文献12

  • 1Michalewicz Z, Schoenauer M. Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation, 1996,4(1):1~32.
  • 2Michalewicz Z. Genetic algorithms, Numerical optimization and constraints. In: Esheiman LJ, ed. Proceedings of the 6th International Conference on Genetic Algorithms. San Mateo: Morgan Kanfmann Publishers, 1995 151~158.
  • 3Deb K. An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering,2000,186(2--4):311 ~338.
  • 4Runarsson TP, Yao X. Stochastic ranking for constrained evolutionary optimization. IEEE Transaclons on Evolutionary Computation, 2000,4(3):284-294.
  • 5Zitzler E, Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 1999,3(4):257~271.
  • 6Beyer H-G, Deb K. On self-adaptive features in real-parameter evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 2001,5(3):250--270.
  • 7Ono I, Kita H, Kobayashi S. A robust real-coded genetic algorithm using unimodal normal distribution crossover augmented by uniform crossover: effects of self adaptation of crossover probabilities. In: Banzhaf W, Daida J, Eiben E, eds. GECCO'99:Proceedings of the Genetic and Evolutionary Computation Conference. San Mateo: Morgan Kaufmann Publishers, 1999. 496~503.
  • 8Tsutsui S, Yamamura M, Higuchi T. Multi-Parent recombination with simplex crossover in real coded genetic algorithms. In:Banzhaf W, Daida J, Eiben E, eds. GECCO'99: Proceedings of the Genetic and Evolutionary Computation Conference. San Mateo:Morgan Kaufmann Publishers, 1999. 657---664.
  • 9Kita H. A comparison study of self-adaptation in evolution strategies and real-coded genetic algorithms. Evolutionary Computation,2001,9(2):223~241.
  • 10Deb K, Joshi D, Anand A. Real-Coded evolutionary algorithms with parent-centric recombination. Technical Report, KanGALReport No.2001003, Kanpur: Indian Institute of Technology, 2001.

共引文献61

同被引文献55

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部