期刊文献+

综合利用各类信息的红外/雷达数据关联 被引量:3

Radar/Infrared Sensor Data Association by the Synthesized Utilization of Information
下载PDF
导出
摘要 异类传感器数据关联是数据融合中的一个难点,综合利用角度和其他特征信息是改善异类传感器数据关联的一个重要途径。对于雷达在直角坐标系对目标进行跟踪、红外传感器在修正的球坐标系对目标进行跟踪情况,文章综合利用角度、角度变化率和ITG(Inverse-Time-to-Go)信息,构建了新的关联统计量,并进行了计算机仿真。结果表明,所给出的新关联统计量较之只利用角度或角度变化率的关联统计量有更好的关联性能。 Data association of heterogeneous sensor plays an important role in data fusion. The synthesized utilization of angle and other feature information is a trend to improve the performance of heterogeneous sensors in data association. In terms of association, this paper constitutes a new association statistics based on the combination of angle, angle rate and ITG information,which a radar operates in Cartesian coordinate and an IR sensor operates in the modified polar coordinate. And assimilation is made. The results show that the association performance of the proposed method is superior to that of the association statistics based on angle or angle rate information.
出处 《传感技术学报》 CAS CSCD 北大核心 2009年第6期816-821,共6页 Chinese Journal of Sensors and Actuators
基金 国家地 县级海防管理监控中心项目资助(KJZ06088)
关键词 雷达 红外 数据关联 关联统计量 radar IR data association association statistics
  • 相关文献

参考文献12

  • 1Stephen C. Stubberud. , Kathleen A. Kramer, J. Antonio Geremia. Analysis of the Effects of Bearings-Only Sensors on the Performance of the Neural Extended Kalman Filter Tracking System [C]// IEEE International Conference, Turkey, 14-16 July 2008.
  • 2程,李辉,张安,沈莹.基于伪点迹的多传感器异步航迹关联算法[J].传感技术学报,2006,19(3):878-881. 被引量:9
  • 3Deb S , et al. A Multisensor-Multitarget Data Association Algorithm for Heterogeneous Sensors [J]. IEEE Trans on Aerospace and Electronic Systems, 1993, 29(2):560-568.
  • 4Mark L Krieg , Douglas A Gray. Multisensor Probabilistic Multihypothesis Tracking Using Dissimilar Sensor [C]// SHE, Vol. 3086, 1997, 129-138.
  • 5Wang Guohong , Mao Shiyi , He You. A Triple-Threshold Radar-to-ESM Correlation Algorithm When Each Radar Track is Specified by Different Number of Measurements [J]. IEE Proc Radar, Sonar &NaviNg, 2000, 147(4) : 1772181.
  • 6Wang Guohong , Mao Shiyi , He You. Performance Evaluation of Association of Active and Passive Sensor Tracks for Airborne Sensors [J]. Signal Processing, 2003, 83 (5): 973- 981.
  • 7Farina , La Scala B. Methods for the Association of Active and Passive Tracks for Airborne Sensors[C] . IRS98 International Radar Symposium, Munich, Germany, Sept 1998, 735- 743.
  • 8王国宏,毛士艺,何友.雷达与红外数据融合评述[J].火力与指挥控制,2002,27(2):3-6. 被引量:31
  • 9孙志刚.仅有角度量测的红外机动目标跟踪[J].激光与红外,2004,34(6):449-451. 被引量:8
  • 10Sanjeev Arulampalam , Branko Ristic. Comparison of the Particle Filter with Range Parameterized and Modified Polar EKF's for Angle Only Tracking[C]// SPIE, Vol. 4048, 2000, 288-299.

二级参考文献21

  • 1蔡元龙.模式识别[M].西安:西安电子科技大学出版社,1992.67-69.
  • 2[1]Stallard D V. An Angle-only Tracking Filter in Modified Spherical Coordinates [ A ]. Proc. 1987 AIAA Guidance Navigation and Control Conf. , 1987:542 -550.
  • 3[2]Allen R R. Implementatin of an Angle-only Tracking Filter[ J ]. Signal and Data Processing of Small Targets1991 ,Proc. SPIE,Vol. 1481 ,Apr. 1991:292 -303.
  • 4[3]Samuel Blackman,Robert Popoli. Design and Analysis of Modern Tracking Systems [ M ]. Artch House. 1999.
  • 5韩林频,吴加望.纯角度测量跟踪滤波器[J].现代防御技术,1995,(5):53-63.
  • 6李伟仁 谢希权.机载导弹武器系统[M].西安:空军工程大学,1999..
  • 7Gilbert T T. Multimode Guidance in Advanced Airto-air Missile Applications [M]. AIAA Guidance,Navigation and Control Conference, 1986 : 86-2040.
  • 8Uhumeister B. Kalman Filters for a Missile with Radar and/or imaging Sensor[M]. J. of Guidance,1994,17(6) : 1339-1344.
  • 9Pawlak R J,Beex A A. Fusion Technique for Multisensor Track Initiation [M]. IEE Proc. -Radar ,Sonar. 1995,142 (5).
  • 10Tuveny O,Tomasimi B,Alengrin G,etal. Track Initiation within a Multi-sensor Environment Radar/IR, Partl : The Theory of Evidence Applied to Multiple hypothesis Tracking [M] Conference RADAR'92 ,Brighton: 1992.

共引文献59

同被引文献18

  • 1黎新伍.基于MRF模型和EM算法的多源图像融合方法[J].传感技术学报,2006,19(2):525-529. 被引量:5
  • 2程,李辉,张安,沈莹.基于伪点迹的多传感器异步航迹关联算法[J].传感技术学报,2006,19(3):878-881. 被引量:9
  • 3Bar-Shalom, Y., Daum, F., Huang, J. The Probabilistic Data Association Filter. IEEE Control Systems Magazine. 2009, 29(6): 82-100.
  • 4Jia Zhengwang, Li Yinya, Mao Mingxiu, et al.. Research of Improved Probability Data Association Algorithm for Multi-target Tracking [ C ]. Control and Decision Confer- ence, Chinese, 2009: 4919-4923.
  • 5Jitendra K. Tugnait. Tracking of Multiple Maneuvering Tar- gets in Clutter Using Multiple Sensors, IMM, and JPDA Coupled Filtering. IEEE Trans. on Aerospace and ElectronicSystems. 40(1), January, :2004.
  • 6Kim, K., Shafai, B. Neural Data Association. SPIE Pro- ceedings, 1481 ( 1991 ) ,406-417.
  • 7何友 黄晓东.基于模糊综合决策的航迹相关算法.海军工程学院学报,1999,(4):1-11.
  • 8韩崇昭,朱洪艳,段战胜.多源新息融合[M].北京:清华大学出版社,2006:290.
  • 9DEZERT J. Foundations for a new theory of plausible and paradoxical reasoning, information & security [J]. An Int Journal, 2002,45(9): 13-57.
  • 10SMARANDACHE F, DEZERT J. Advances and applica- tions of DSmT for information fusion [M]. Rehoboth: American Research Press, 2006:15-20.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部