期刊文献+

无线传感器网络中一种新型加权Mel滤波器组

A Novel Weighted Mel-Filter Bank in Wireless Sensor Networks
下载PDF
导出
摘要 提出了一种提取车辆声音特征的新型加权Mel滤波器组进行车辆的识别。这种新型滤波器组通过赋予各离散频率不同的权重,突出车辆频谱之间差异较大频段的信息,弱化较为相似频段的信息。相比于传统的Mel滤波器组,加权Mel滤波器组的识别能力得到了显著提高。仿真和实测结果均表明,与两种常用的特征提取方法相比,加权Mel滤波器组不仅能更有效地提取不同类型车辆间的差异信息,获得更高的正确识别率,还降低了计算复杂度。 This paper develops a novel Weighted Mel-filter Bank (WMFB) used in acoustic feature extraction for vehicle classification. This novel filter bank emphasizes the frequency spectrum where the vehicles are more distinct while attenuates the frequency spectrum where the vehicles are less distinct by placing different weights on separated frequency. The discriminating ability of weighted Mel-filter bank obviously increases compared with conventional Mel-filter bank. Simulated and experimental results both show that WMFB not only shows more effectiveness in extracting distinct features between different types of vehicles than two frequently used feature extraction methods and achieves higher correct recognition ratio, but also reduces the complexity of computation.
出处 《传感技术学报》 CAS CSCD 北大核心 2009年第6期844-851,共8页 Chinese Journal of Sensors and Actuators
基金 上海市科委重点项目资助(07dz15011)
关键词 无线传感器网络 特征提取 加权Mel滤波器组(WMFB) 正确识别率 计算复杂度 wireless sensor network feature extraction Weighted Mel-filter Bank (WMFB) correct recognition ratio complexity of computation
  • 相关文献

参考文献12

  • 1Xiao Shen, Shen Cong-wan, Hong Huo. An Improvement on Discrete Wavelet Transform-Based Algorithm for Vehicle Classification in Wireless Sensor Networks[C]// 2006 1st IEEE Conference on Industrial Electronics and Applications, May. 24-26, 2006, 1-4.
  • 2Yang S S, Kim, Y G, Choi Hongsik. Vehicle Identification Using Wireless Sensor Networks [C]// SeutheastCon, IEEE Proceedings, March. 22-25, 2007, 41-46.
  • 3http://www. eee. wise. edu/-sensit/[EB/OL].
  • 4Wang Xiao-ling. High Accuracy Distributed Target Detection and Classification in Sensor Networks Based on Mobile Agent Framework [D]. [Ph. D. Thesis]. The University of Tennessee, 2004.
  • 5朱福根.车桥振动噪声信号特征提取方法的研究[J].传感技术学报,2006,19(4):1070-1073. 被引量:3
  • 6Vikramjit Mitra, Wang, C.J. A Neural Network Based Audio Content Classification. Neural Networks[C]// Conference on International Joint, IJCNN, Aug. 12-17, 2007, 1494-1499.
  • 7Choi Euisun, Lee Jongseok, Yoon Joonhyun. Feature Extraction for Bank Note Classification Using Wavelet Transform [C]// 18th International Conference on Pattern Recognition, ICPR, 2006, 934-937.
  • 8Jiang Yun-fei, Guo Ping. Comparative Studies of Feature Extraction Methods with Application to Face Recognition[C]// IEEE International Conference on Systems, Man and Cybernetics, ISIC, Oct. 7-10, 2007, 3627-3632.
  • 9Zheng Fang, Zhang Guo-liang, Song Zhan-jiang. Comparison of Different Implementations of MFCC[J]. Journal of Computer Science and Technology (English Edition), 2001,16 ( 6 ) : 582-589.
  • 10Han Wei, Chan Cheong-Fat, Choy Chiu-Sing. An Efficient MFCC Extraction Method in Speech Recognition[C]// Proceedings of the International Symposium on Circuits and Systems. 2006, 145-148.

二级参考文献7

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部