摘要
为了实现网络覆盖范围的最大化,延长网络寿命,本文在粒子进化的多粒子群算法的基础上提出了一种无线传感网络覆盖优化策略。通过多种群并行搜索,采取粒子进化理论使陷入局部最优的粒子迅速跳出,有效地避免了基本粒子群算法容易出现的"早熟"问题,提高了算法的稳定性。通过仿真实验分析了节点感知半径对覆盖性能指标的影响,覆盖率和收敛速度随着感知半径的增大逐渐增大和加快。仿真实验结果表明粒子进化的多粒子群优化策略比基本粒子群算法、传统遗传算法和新量子遗传算法具有更好的覆盖优化效果。
To maximize the network coverage and extend the life of the network, a Wireless Sensor Networks (WSNs) coverage optimal strategy is proposed based on the evolution of Multi-particle Particle Swarm Optimization (MPSO). By using the method of Multi-groups parallel searching, the particles, which fall into the best part area according to the theory of evolution,can be chosen rapidly. The strategy also avoids a phenomenon of "premature" which often occurs when using the method of elementary Particle Swarm Optimization (PSO), and improves the stability of the algorithm. In the paper, the influence about perceived radius of the nodes on the coverage performance is analyzed through the simulation experiment. Coverage rate and convergence rate increases as the radius of perception speeds up gradually. Experimental results indicate that the MPSO strategy is better than PSO, the Conventional Genetic Algorithms (CGA), the New Quantum Genetic Algorithm (NQGA) in coverage optimization.
出处
《传感技术学报》
CAS
CSCD
北大核心
2009年第6期873-877,共5页
Chinese Journal of Sensors and Actuators
基金
浙江省教育厅项目资助(Y200805812)
浙江省自然科学基金资助(Y106660)
国家杰出青年科学基金资助(60525304)
关键词
无线传感网络
覆盖优化
粒子进化
粒子群算法
覆盖率
wireless sensor networks
coverage optimization
particle evolution
particle swarm optimization
coverage rate