期刊文献+

无线传感网络覆盖的粒子进化优化策略研究 被引量:22

Research on the Strategy of Wireless Sensor Networks Coverage by the Particle Optimization Evolutionary
下载PDF
导出
摘要 为了实现网络覆盖范围的最大化,延长网络寿命,本文在粒子进化的多粒子群算法的基础上提出了一种无线传感网络覆盖优化策略。通过多种群并行搜索,采取粒子进化理论使陷入局部最优的粒子迅速跳出,有效地避免了基本粒子群算法容易出现的"早熟"问题,提高了算法的稳定性。通过仿真实验分析了节点感知半径对覆盖性能指标的影响,覆盖率和收敛速度随着感知半径的增大逐渐增大和加快。仿真实验结果表明粒子进化的多粒子群优化策略比基本粒子群算法、传统遗传算法和新量子遗传算法具有更好的覆盖优化效果。 To maximize the network coverage and extend the life of the network, a Wireless Sensor Networks (WSNs) coverage optimal strategy is proposed based on the evolution of Multi-particle Particle Swarm Optimization (MPSO). By using the method of Multi-groups parallel searching, the particles, which fall into the best part area according to the theory of evolution,can be chosen rapidly. The strategy also avoids a phenomenon of "premature" which often occurs when using the method of elementary Particle Swarm Optimization (PSO), and improves the stability of the algorithm. In the paper, the influence about perceived radius of the nodes on the coverage performance is analyzed through the simulation experiment. Coverage rate and convergence rate increases as the radius of perception speeds up gradually. Experimental results indicate that the MPSO strategy is better than PSO, the Conventional Genetic Algorithms (CGA), the New Quantum Genetic Algorithm (NQGA) in coverage optimization.
出处 《传感技术学报》 CAS CSCD 北大核心 2009年第6期873-877,共5页 Chinese Journal of Sensors and Actuators
基金 浙江省教育厅项目资助(Y200805812) 浙江省自然科学基金资助(Y106660) 国家杰出青年科学基金资助(60525304)
关键词 无线传感网络 覆盖优化 粒子进化 粒子群算法 覆盖率 wireless sensor networks coverage optimization particle evolution particle swarm optimization coverage rate
  • 相关文献

参考文献11

二级参考文献96

  • 1屈玉贵,翟羽佳,蔺智挺,赵保华,张英堂.一种新的无线传感器网络传感器放置模型[J].北京邮电大学学报,2004,27(6):1-5. 被引量:24
  • 2闻英友 ,冯永新 ,王光兴 .无线传感器网络中基于伸展树的感知节点分布优化[J].自动化学报,2005,31(5):737-742. 被引量:4
  • 3付华,杜晓坤,陈峰.基于神经元网络的超声传感器补偿算法及在井下机器人避障中的应用[J].传感技术学报,2006,19(2):511-514. 被引量:5
  • 4Bulusu N,Heidemann J,Estrin D.GPS-Less low cost outdoor localization for very small devices.IEEE Personal Communications Magazine,2000,7(5):28-34.
  • 5He H,Huang C,Blum BM,Stankovic JA,Abdelzaher TF.Range-Free localization schemes in large scale sensor networks.In:Johnson DB,ed.Proc.of the ACM MobiCom 2003.San Diego:ACM Press,2003.81-95.
  • 6Romer K,Zurich E.The lighthouse location system for smart dust.In:Siewiorek D,ed.Proc.of the 1st Int'l Conf.on Mobile Systems,Applications,and Services.San Francisco:ACM Press,2004.15-30.
  • 7Okabe A,Boots B,Sugihara K,Chiu S.Spatial Tessellations:Concepts and Applications of Voronoi Diagram.2nd ed.,New York:John Wiley & Sons,1999.
  • 8Hochbaum DS.Approximation Algorithms for NP-Hard Problems.Cambridge:PWS Publishing Company,1995.
  • 9Cormen TH,Leiserson CE,Rivest RL,Stein C.Introduction to Algorithms.2nd ed.,Cambridge:MIT Press,2001.
  • 10Yah T,He T,Stankovic J.Differentiated surveillance service for sensor networks.In:Akyildiz IF,Estion D,eds.Proc.of the 1st Int'l Conf.on Embedded Networked Sensor Systems.Los Angels:ACM Press,2003.51-63.

共引文献258

同被引文献188

引证文献22

二级引证文献254

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部