期刊文献+

基于全方位视觉传感器的车辆违章检测系统的设计 被引量:1

Design of a Traffic Violation Detection System Based on Omni-Directional Vision Sensors
下载PDF
导出
摘要 探讨了利用全方位视觉传感器(ODVS)以及计算机视觉等技术来实现对交岔路口的车辆违章智能视频监控,采用ODVS来获取整个交岔路口的全景视频图像;通过混合高斯模型提取在全景视频图像中的车辆对象前景;使用camshift跟踪算法跟踪行驶车辆对象;依据交通法规,通过对比红绿灯、车道和车辆运动等状态来判断车辆对象是否有违章行为;实验结果表明,所设计的违章检测系统能自动检测出多种车辆违章行为,为交通执法部门提供了一种智能化的检测手段。 A new intelligent monitoring system for detecting traffic violation is presented, the system is based on omni-direetional vision sensor (ODVS) and computer vision technology. In course of omni-directional image acquisition on intersections, ODVS is used. In course of vehicle object foreground extraction, color space conversion and mulgaussian model is utilized. In course of vehicle object tracking, camshift tracking algorithm is proposed. Finally, based on traffic law, traffic lights, lanes and vehicle movement, and other state are compared to estimate vehicles peccancy. The experimental results demonstrate that the proposed scheme can automatically detect variety of vehicles illegal acts, and provide transportation department a intelligent method to detect vehicle violations.
出处 《计算机测量与控制》 CSCD 北大核心 2009年第6期1045-1048,共4页 Computer Measurement &Control
基金 国家自然科学基金(60673177) 浙江省科技厅重大科技项目(2006C11202)
关键词 计算机视觉 ODVS CAMSHIFT跟踪算法 交通状态检测 车辆违章检测 computer vision ODVS camshift tracking algorithm traffic signal detection traffic violation detection
  • 相关文献

参考文献7

二级参考文献25

  • 1杨继华,严国萍.基于嵌入式Linux与S3C2410平台的视频采集[J].单片机与嵌入式系统应用,2004,4(11):69-71. 被引量:29
  • 2左文明.连通区域提取算法研究[J].计算机应用与软件,2006,23(1):97-98. 被引量:31
  • 3[1]Huwer S, Niemann H. Adaptive Change Detection for Real-time Surveillance Applications[A].Proceedings. 3rd IEEE International Workshop on Visual Surveillance[C]. 2000. 37-46.
  • 4[2]Wern C R, Azarbaycjani A, Darrell T, et al. Pfinder: Real-time Tracking of Human Body[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19: 780-785.
  • 5[3]Stauffer C, Grimson W E L. Adaptive Background Mixture Models for real-time Tracking[J]. IEEE Conf, on CVPR. 1999,2:246-252.
  • 6[4]Elgammal A, Harwood D, Davis L. Non-parametric Model for Background Subtraction[EB/OL]. www.cs.umd.edu/users/elgammal/docs/eccv2000.pdf 2000.
  • 7[5]Gordon G, Darrel T, Harville M, et al. Background Estimation and Removal Based on Range and Color[J]. IEEE Conf, on CVPR. 1999,2:459-464.
  • 8[6]Harville M, Gordon G, Woodfill J. Foreground Segmentation Using Adaptive Mixture Models in Color and Depth[A]. Proceedings of the IEEE Workshop on Detection and Recognition of Events in Video[C]. Vancouver:Canadu,2001. 3-11.
  • 9Yung N H C , Lai A H S. An Effective Video Analysis Mettxxt for Detecting Red Light Runners [ J ].IEEE Transactions on Vehicular Technology ,2001,50(4) : 1076- 1084.
  • 10Lai A H S , Yung N H C . Vehicle - Type Identification Through Automated Virtual Loop Assignment and Block-Based Direction- Biased Motion Estimation[J] . IEEE Transactions on Intelligent Transportation Systems ,2000,1(2) :86 -92.

共引文献86

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部