期刊文献+

CO与Pd_n(n=1-8)团簇的相互作用 被引量:5

Interaction of CO with Palladium Clusters Pd_n(n=1-8)
下载PDF
导出
摘要 采用密度泛函理论对CO与钯团簇的相互作用进行了系统研究.结果表明,PdnCO(n=1-8)体系的最低能量结构是在Pdn(n=1-8)团簇最低能量结构或亚稳态结构的基础上吸附CO生长而成;CO的吸附以端位吸附为主,其吸附没有改变Pdn团簇的结构;CO分子在Pdn团簇表面发生的是非解离性吸附.与优化的CO键长(0.1166nm)相比,除了n=2,团簇PdnCO的C—O键长为0.1167-0.1168nm,吸附后C—O键长变化较小,CO分子被活化程度较小.电荷集居数分析表明,CO的吸附对Pdn团簇的影响比较小;二阶能量差分表明,n=4,6的团簇是相对稳定的团簇. Adsorption of CO onto Pdo (n=1-8) dusters was systematically investigated using density functional theory. Results indicate that the lowest energy structures of PdnCO are still generated when CO is adsorbed onto Pdn clusters. We found that among the molecular adsorption states, a weakly bound state with end-on type geometry is the most energetically favorable. The lowest energy structures of Pdn clusters are not changed by adsorbing CO molecules. Chemisorption of CO onto Pdn cluster surfaces is a non-dissociative adsorption process. An increased theoretical CO bond length of 0.1167-0.1168 nm in PdnCO cluster (compared to 0.1166 nm in free CO molecule) indicates a small activation for the CO bond except for the case where n =2. Natural bond orbital analysis shows that the interaction between a Pd atom and a CO molecule is small. The second-order energy difference shows that Pd4CO and Pd6CO clusters have enhanced stabilities.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2009年第6期1195-1200,共6页 Acta Physico-Chimica Sinica
基金 石河子大学高层次人才科研启动资金专项(RCZX200747)资助
关键词 PdnCO和Pdn团簇 密度泛函理论 几何结构 电子性质 PdnCO and Pdn clusters Density functional theory, Geometry Electronic property
  • 相关文献

参考文献36

  • 1Liu,J.H.;Wang,A.Q.;Chi,Y.S.;Lin,H.P.;Mou,C.Y.J.Phys.Chem.B,2005,109:40
  • 2Haruta,M.Catal.Today,1997,36:153
  • 3Bond,G.C.;Thompson D.Catal.Rev.Sci.Eng.,1999,41:319
  • 4Daniel,M.C.;Astruct,D.Chem.Rev.,2004,104:293
  • 5Valden,M.;Lai,X.,Goodman,D.W.Science,1998,281:1647
  • 6Boccuzzi,F.;Chiorino,A.J.Phys.Chem.B,2000,104:5414
  • 7Molina,L.M.;Hammer,B.Phys.Rev.Lett.,2003,90:206102
  • 8Sanchez,A.;Abbet,S.;Heiz,U.;Schneider,W.D.;Hakkinen,H.;Barnett,R.N.;Landman,U.J.Phys.Chem.A,1999,103:9573
  • 9Lopez,N.,Norskov,J.K.J.Art Chem.Soc.,2002,124:11262
  • 10Hakkinen,H.;Landman,U.J.Art Chem.Soc.,2001,123:9704

二级参考文献22

  • 1Nava P, Sierka M, Ahlrichs R.. Phys. Chem. Chem. Phys.[J]. 2003, 5:3372-3381.
  • 2Xiao C, Krüger S, Belling T, Mayer M et al.. Int. J Quant. Chem.[J]. 1999, 74:405-416.
  • 3Zacarias A G., Castro M, Tour J M et al.. J Phys. Chem. A[J]. 1999, 103:7692-7700.
  • 4Valerio G, Toulhoat H.. J Phys. Chem.[J]. 1996, 100:10827-10830.
  • 5Moore C E.. Table of Atomic Energy Levels[M]. Washington DC:U.S National Bureau of Standards, 1971.
  • 6Estiú G. L, Zerner M C. J Phys. Chem.[J]. 1994, 98:4793-4799.
  • 7Blomverg M R. A, Siegbahn P. E. M, Svensson M P. E. et al.. J Phys. Chem.[J]. 1992, 96:5783-5789.
  • 8Nakao T, Dixon D A, Chen H.. J Phys. Chem.[J]. 1993, 97:12665-12667.
  • 9Cui Q, Musaev D G, Morokuma K. J Chem. Phys.[J]. 1998, 108:8418-8159.
  • 10Lin S, Straus B, Kant A. J Chem. Phys.[J]. 1969, 51:2282-2283.

共引文献12

同被引文献267

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部