期刊文献+

一种融合二值边缘特征和灰度特征的人脸识别方法 被引量:3

A Novel Face Recognition Method Based on the Fusion of Binary Edge and Grayscale Features
下载PDF
导出
摘要 光照变化是影响现有人脸识别算法性能的主要因素之一.基于边缘特征的方法能获得较好的光照鲁棒性,且易于实现,但它对表情变化的鲁棒性较差.本文提出了一种融合二值边缘特征和灰度特征的人脸识别方法,并首次将二阶互信息相似性测度引入人脸识别中.在AR图像集和Yale图像集上的实验表明,本方法对含有光照变化和表情变化的图像能获得比现有其它方法更好的总体识别率,具有较好的实用价值. Illumination change is of great importance in affecting the performance of some existing face recognition algorithms. Though edge-based methods are robust to iUttmination variation and are easy to implement,they do not work perfectly in the cases with expression variation. In order to improve both the lighting robusmess and expression robustness, a novel face recognition method based on the fusion of binary edge and grayscale features was proposed. Also the second-order mutual information was used for the similarity metric of grayscale face image for the first time. AR dataset and Yale dataset with various illumination and expression variation were tested to evaluate the effect of the proposed method. Results showed that the overall face recognition rate of the proposed method was better than that of other methods. And these results indicate that our method is more effective for practical use.
出处 《电子学报》 EI CAS CSCD 北大核心 2009年第6期1180-1184,共5页 Acta Electronica Sinica
基金 浙江省自然科学基金(No.Y105239 602118) 宁波市自然科学基金(No.2006A610015 2007A610047)
关键词 人脸识别 光照变化 表情变化 特征融合 二值边缘特征 灰度特征 face recognition illumination change expression change feature fusion binary edge feature grayscale feature
  • 相关文献

参考文献15

  • 1Zhao W Y, Chellappa R, Rosenfeld A, Phillips J. Face recognition: a literature survey[J]. ACM Computing Survey, 2003,35 (4) :399 - 458.
  • 2M Turk, A Pentland. Eigenfaces for recognition[ J]. Journal of Cognitive Neuroscience, 1991,3(1 ) : 71 - 86.
  • 3P N Belhurneur, J P Hespanha, D J Kriegtran. Eigenfaces vs. fisherfaces: recognition using class specific linear projection [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(7) :711 - 720.
  • 4B Moghaddam, T Jebara, A Penfland. Bayesian face recognition [J] .Pattern Recognition, 2000,33 (11) :1771 - 1782.
  • 5K Lee, J Ho, D Kriegman. Acquiring linear subspaces for face recognition under variable lighting [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27 (5):684- 698.
  • 6L Zhang, D Samaras. Face recognition from a single training image under arbitrary unknown lighting using spherical harmonics[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(3) :351 - 363.
  • 7B Takacs. Compadng face images using the modified Hausdorff distance[ J]. Pattern Recognition, 1998,31(12) :1873 - 1881.
  • 8Y Gao, M K H Leung. Face recognition using line edge map [ J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(6) :764 - 779.
  • 9J Song,B Chen,Z Chi,et al. Face recognition based on binary template matching [ A ]. Proceedings of the Third International Conference on Intelligent Computing(ICIC2007) [ C ]. Berlin: Springer-Verlag,2007.1131 - 1139.
  • 10A M Martinez, R Benavente. The AR face database. CVC technical report # 24,June 1998[EB/OL]. http://cobweb. ecn. purdue. edu./aleix/aleix _ face _ DB. htm, 2007-05-16.

同被引文献54

  • 1汪东,吕绪良,许卫东,潘玉龙,林伟.基于灰度直方图分析技术的伪装应用模型[J].解放军理工大学学报(自然科学版),2004,5(3):74-77. 被引量:18
  • 2王海涛,刘俊,王阳生.自商图像[J].计算机工程,2005,31(18):178-179. 被引量:10
  • 3郑爱彬,张明.基于相关聚合直方图的CBIR[J].南京师范大学学报(工程技术版),2005,5(4):57-60. 被引量:1
  • 4Canny J. A computational app roach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 18(8):679-698.
  • 5Song J ,Chen B, Chi Z , et al. Face recognition based on bina ry template matching [A]. Proceedings of the Third International Conference on Intelligent Computing (ICIC2007) [C]. Berlin ;Springer-Verlag ,2007:1131-1139.
  • 6Pass G, Zabith R. Histogram refinement for content-based image retrieval[M]. IEEE Workshop on Applications of Computer Vision, 1996 : 96-102.
  • 7Bailey H. H. Target detection through visual recognition and a quantitative model[M]. New York: The Rand Corporation, 1970.
  • 8Z Zhou, A Ganesh, J Wright, et al. Nearest subspace patch matching for face recognition under varying pose and illumina- tion [ A ]. Proceedings of the 8th 1EEE International Conference on Automatic Face Gesture Recognition [ C ]. Amsterdam, the Netherlands, 2008.1 - 8.
  • 9S Baker, I Matthews. Lucas-kanade 20 years on: A unifying framework [ J ]. International Joul'nal of Computer Vision,2004,56(3) :221 - 255.
  • 10W Zhao,R CheUappa, et al.Face recognition:A literature sur- vey [J] .ACM Computing Surveys,2003,35:399- 458.

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部