期刊文献+

探测器自主导航的UD-EKF粒子滤波算法研究

Research of UD-EKF Particle Filter in Probes Autonomous Navigation
下载PDF
导出
摘要 用UD分解改进EKF粒子滤波算法,并将其应用于基于星光仰角测量的探测器自主导航方案。UD-EKF是基于递推的UD协方差分解滤波算法,该方法减少了计算舍入误差的影响以及计算机的计算量和数据存储量。用UD-EKF更新粒子,提高了滤波精度,缩短了运行时间,通过计算机仿真证实了其可行性。 Using UD decomposing to modify EKF Particle filter was imported into the navigation scheme based on the measurement of elevation angle of star. LID algorithm is based on covariance decomposing and it reduced the influence of rounding error of calculation, the data storage and calculation quantities was decreased too. Using UD-EKF to update particles can improve the capability of the system, at the same time, reduce the time of calculating and improve the efficiency.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第12期3549-3551,3556,共4页 Journal of System Simulation
基金 国家863计划资助项目(2004AA735080-5)
关键词 UD分解 EKF粒子滤波 自主导航 星光仰角 UD decomposing EKF particle filter autonomous navigation elevation angle of star
  • 相关文献

参考文献10

  • 1R V Merwe, A Doucet, N De Freitas, et al. The unscented particlefilter [R]// TeehniealReportCUED/F2INPENG/TR380. UK: Engineering Department, Cambridge University, 2000.
  • 2Andrieu C de Freitas, J F G Doucet A. Sequential Bayesian estimation and model selection applied to neural networks [R]// Technical Report CUED/F-INFENG/TR 341. UK: Engineering Department, Cambridge University, 1999.
  • 3MacEachern, S N, Clyde M, Liu J S. Sequential importance sampling for nonparametric Bayes models: the next generation [J]. Canadian Journal of Statistics (S0319-5724), 1999, 27(2): 251-267.
  • 4Arulampalam M S, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for on-line nonlincar/non-Gaussian Bayesian tracking [J]. IEEE Transactions on Signal Processing (S1053-587x), 2002, 50(2): 174-188.
  • 5隋树林,袁健,张文霞,于镭,高自友.基于UD-EKF自主光学导航方法仿真[J].系统仿真学报,2007,19(3):482-485. 被引量:4
  • 6Julier J Simon, Uhlmann K. Unscented Filtering and Nonlinear Estimation [J]. Proceedings of the IEEE (S0018-9216), 2004, 92(3).
  • 7David G Lowe. Distinctive Image Features from Scale-Invariant Key points [J]. International Journal of Computer Vision (S1573-1405), 2004, 60(2): 91-110.
  • 8宁博.Gram-Schmidt正交基的行列式表示法[J].高等数学研究,2007,10(1):113-114. 被引量:1
  • 9张瑜,房建成.基于Unscented卡尔曼滤波器的卫星自主天文导航研究[J].宇航学报,2003,24(6):646-650. 被引量:20
  • 10杨博.航天器星敏感器自主定位方法及精度分析[J].宇航学报,2002,23(3):81-84. 被引量:21

二级参考文献9

  • 1刘林.航天器轨道动力学[M].北京:国防工业出版社,2000.99-308.
  • 2CUI Ping-yuan,CUI Hu-tao,HUANG Xiang-yu.Autonomous determination of orbit for probe around asteroids using unscented Kalman filter[J].Journal of Harbin Institute of Technology (New Series)(S1005-9113),2003,10(3).
  • 3Yim Ryeong Jo,Crasssdis L John,John L Junkins.Autonomous Orbit Navigation of Interplanetary Spacecraft[C]//AIAA/AAS Astrodynamics Specialist Conference,Denver,CO,2000:14-17.
  • 4David G Lowe,Distinctive Image Features from Scale-Invariant Key points[J].International Journal of Computer Vision (S1573-1405),2004.
  • 5Julier J.Simon,Uhlmann K.Unscented Filtering and Nonlinear Estimation[J].Proceedings of the IEEE (S0018-9216),2004,92(3).
  • 6S Bhaskaran,J E Riedel,S P Synnott.Autonomous Nucleus Tracking for Comet/Asteroid Encounters:The STARDUST Example[C]// 1998 IEEE Aerospace Conference,Aspen,CO,Mar.21-28,1998.Proceedings,Piscataway,NJ,Institute of Electrical and Electronics Engineers,1998,2:353-365.
  • 7David G.Lowe.Local Feature View Clustering for 3D Object Recognition[C]// Proc.of the IEEE Conference on Computer Vision and Pattern Recognition,Kauai,Hawaii,2001.
  • 8杨博,伍小洁,房建成.一种用星敏感器自主定位方法的精度分析[J].航天控制,2001,19(1):12-16. 被引量:10
  • 9周凤岐,赵黎平,周军.基于星光大气折射的卫星自主轨道确定[J].宇航学报,2002,23(4):20-23. 被引量:23

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部