摘要
用UD分解改进EKF粒子滤波算法,并将其应用于基于星光仰角测量的探测器自主导航方案。UD-EKF是基于递推的UD协方差分解滤波算法,该方法减少了计算舍入误差的影响以及计算机的计算量和数据存储量。用UD-EKF更新粒子,提高了滤波精度,缩短了运行时间,通过计算机仿真证实了其可行性。
Using UD decomposing to modify EKF Particle filter was imported into the navigation scheme based on the measurement of elevation angle of star. LID algorithm is based on covariance decomposing and it reduced the influence of rounding error of calculation, the data storage and calculation quantities was decreased too. Using UD-EKF to update particles can improve the capability of the system, at the same time, reduce the time of calculating and improve the efficiency.
出处
《系统仿真学报》
CAS
CSCD
北大核心
2009年第12期3549-3551,3556,共4页
Journal of System Simulation
基金
国家863计划资助项目(2004AA735080-5)
关键词
UD分解
EKF粒子滤波
自主导航
星光仰角
UD decomposing
EKF particle filter
autonomous navigation
elevation angle of star