期刊文献+

基于AIA优化LS-SVR的参数选取及在非线性系统辨识中的应用(英文) 被引量:1

Parameters Selection of LS-SVR Based on AIA and Its Application in Nonlinear System Modeling
下载PDF
导出
摘要 研究了LS-SVR的参数对LS-SVR泛化性能的影响,在此基础上提出了基于自适应免疫优化算法和k-折交叉检验相结合的LS-SVR参数整定方法。并将其应用于两自由度机器人的逆运动学建模中,仿真结果表明了该方法的有效性。 The effect of parameters selection on approximating performance of least squares support vector regression (LS-SVR) was investigated. Then, parameters selection method of LS-SVR was proposed based on adaptive immune algorithm (AIA) plus 5-fold cross validation, which was applied to inverse kinematics modeling of 2DOF robot. Simulation results verify the feasibility and validity of this method.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第12期3710-3714,3717,共6页 Journal of System Simulation
基金 Natural Science Foundation of China (60675048)
关键词 最小二乘支持向量回归 参数选择 自适应免疫算法 逆运动学建模 LS-SVR parameters selection AIA inverse kinematics modeling
  • 相关文献

参考文献11

二级参考文献105

共引文献298

同被引文献12

  • 1荣海娜,张葛祥,金炜东.系统辨识中支持向量机核函数及其参数的研究[J].系统仿真学报,2006,18(11):3204-3208. 被引量:79
  • 2SUH I A. Visual servoing algorithm using fuzzy logics and fuzzy neural networks[C] //Proceeding of IEEE International Conference on Robotics and Automation. Minneapolis, MN, USA: IEEE, 1996 : 3605 - 3612.
  • 3CUPERTINO E GIORDANO V, MININNO E, et al. A neural visual servoing in uncalibrated environments for robotic manipulators[C]// Proceeding of the IEEE International Conference on Systems, Man and Cybernetics. Italy: IEEE, 2004, 5362 - 5367.
  • 4PIEPMEIER J A, MCMURRAY G V, LIPKIN H. Uncalibrated dynamic visual servoing[J]. IEEE Transactions on Robotics and Automation, 2004, 20(1): 143 - 147.
  • 5SU J B, QIU W B, MA H Y, et al. Calibration-free robotic eye-hand coordination based on an auto disturbance-rejection controller[J]. Robotics and Automation, 2004, 20(5): 899 - 907.
  • 6VAPNIK V, GOLOWICH S, SMOLA A. Support vector method for function approximation, regression estimation, and signal processing[C]//Advances in Neural Information Processing Systems. Cambridge, MA, MIT Press, 1997, 9:281 - 287.
  • 7SCHOLKOPF B, SIMARD P Y, SMOLA A J, et al. Prior knowledge in support vector kernels[C]//Advances in Neural Information Processing Systems. Cambridge, MA, MIT Press, 1997,10 : 640 - 646.
  • 8KEERTHI S S, LIN C J. Asymptotic behaviors of support vector machines with gaussian kernel[J]. Neural Computation, 2003, 15(7): 1667 - 1689.
  • 9SCHOLKOPF B, SUNG K, BURGES C, et al. Comparing support vector machines with Gaussian kernels to radial basis function classifiers[J]. IEEE Transactions on Signal Processing(S1070-9908), 1997, 45(11): 2758 - 2765.
  • 10TAKAHASHI K, YAMADA T. Application of an immune feedback mechanism to control systems[J]. JSME International Journal, 1998, 41(2): 184- 191.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部