期刊文献+

PVA短纤维增强粉煤灰-地聚合物基挤压复合材料的动态行为 被引量:5

Dynamical behavior of PVA short fiber reinforced fly ashgeopolymeric extrusion composite
原文传递
导出
摘要 首先通过挤压成型技术制备出宽厚比为12.5的聚乙烯醇(PVA)短纤维增强地聚合物基复合材料薄板(SFRGC),然后利用Radmana冲击试验机系统研究了不同纤维体积分数和粉煤灰掺量的SFRGC在高速冲击载荷作用下的力学响应行为。通过激光粒度仪(LSA)、X射线衍射(XRD)、扫描电镜(SEM)等微观测试手段分析了SFRGC的微观结构和冲击破坏机制,结果表明,PVA短纤维的加入改变了地聚合物的冲击破坏模式:由脆性破坏变为延性破坏;对于不掺或掺加少量粉煤灰(≤10 wt%)的地聚合物基复合材料冲击强度高、韧性大,然而当大量粉煤灰(≥30 wt%)加入后,地聚合物基复合材料的冲击强度和韧性显著下降。另外,对SFRGC在20次冻融和1个月硫酸侵蚀作用后的冲击响应进行了研究,探讨了SFRGC在严酷环境条件下的耐久性能。 The polyvinyl alcohol (PVA) short fiber reinforced fly ash -geopolymer composites (SFRGC) (width to height ratio= 12.5) were firstly manufactured by the single-screw extrusion technique. The dynamic responses were studied on the SFRGC with different fiber and fly ash contents by using a Radmana impact tester. The microstructure and impact failure mechanism were also explored by laser particle size analysis (LSA), X- ray diffraction analysis (XRD) and scanning electron microscope (SEM). The results show that PVA fiber addition greatly increases the ductility of SFRGC, especially in the ease of high volume fraction of fiber, resulting in a change of impact failure mode from the brittle pattern to a ductile one. A comparative fly ash addition also exhibited obvious influence on the impact behavior. SFRGC without or with low mass fraction of fly ash (≤10%) possess high impact strength, stiffness and toughness. However, the impact resistance is greatly reduced when too much(≥30%) fly ash was incorporated. In addition, the changes in the impact response of SFRGC after subjecting to 20 freeze- thaw cycles and 1 month of H2 SO4 attack were systematically investigated.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2009年第3期147-154,共8页 Acta Materiae Compositae Sinica
基金 国家自然科学基金(50702014) 东南大学优秀青年教师教学科研资助计划(DNDX-12) 教育部新世纪优秀人才支持计划(NCET-08-0116)
关键词 短纤维 粉煤灰 地聚合物 挤压 动态行为 微观结构 short fiber fly ash geopolymer extrusion dynamic behavior mierostructure
  • 相关文献

参考文献18

  • 1Davidovits J. Geopolymers and geopolymeric new materials [J]. Journal of Thermal Analysis, 1989, 35(2): 429-441.
  • 2Davidovits J, Davidovits M. Geopolymer: Ultrahightemperature tooling material for the manufacture of advanced composites [C]// Adsit R, Gordaninejad F. 36th Annual SAMPE Symposium and Exhibition. Covina, USA: CA Press, 1991, 36(2): 1939-1949.
  • 3Davidovits J. Geopolymer cement to minimize carbon - dioxide greenhouse- warming [C]// Moukwa M, Sarkar S L, Luke K, Grutzeck M W. Cement-Based Materials: Present, Future and Environmental Aspects. America: American Ceramic Society, 1993: 165-182.
  • 4Davidovits J. Properties of geopolymer cement[C]//Skvara F. Proceedings 1st International Conference on Alkaline Cements and Concretes. Kiev Ukraine: Scientific Research Institute on Binders and Materials, Kiev State Technical University, 1994:131-149.
  • 5Lyon R E, Foden A, Balaguru P N, Davidovits M, Davidovits J. Fire-resistant aluminosilicate composites[J].Journal Fire and Materials, 1997, 21(2): 67-73.
  • 6Davidovits J. High alkali cements for 21st century concretes[C]//Mehta P K. Concrete Technology, Past, Present, and Future: SP- 144. Detroit, America: American Concrete Institute, 1994:383-397.
  • 7Davidovits J. Geopolymer chemistry and properties[C]// Davidovits J, Orlinsl J. Proceedings of the First European Conference on Soft Mineralogy. France: The Geopolymer Institute, 1988: 25-48.
  • 8Hongling W, Haihong L, Fengyuan Y. Synthesis and mechanical properties of metakaolinite-based geopolymer[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 268(1/3): 1-6.
  • 9Bakharev T. Resistance of geopolymer materials to acid attack [J]. Cement and Concrete Research, 2005, 35(4): 658-670.
  • 10Sofi M, van Deventer J S J, Mendis P A. Engineering properties of inorganic polymer concretes (IPCs)[J].Cement and Concrete Research, 2007, 37(2):251-257.

同被引文献57

引证文献5

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部