期刊文献+

填充吸波泡沫的碳纤维复合材料格栅结构吸波性能计算 被引量:3

Analysis of Absorbing ability of the carbon fiber composite grid structures filled with foams
原文传递
导出
摘要 采用空间回路网法计算得到填充吸波泡沫的碳纤维复合材料格栅结构的电磁散射性能。根据格栅结构的周期性排布特征,采用Floquet定理分析结构的周期性边界条件,将计算模型简化为一个周期单元进行电磁场分布计算。通过计算结果分析结构在不同频率、不同单元体尺寸下的吸波性能。计算表明:对于含吸波泡沫的复合材料格栅结构,其吸波性能明显好于未填充结构;格栅单元中所填充的泡沫厚度以及泡沫体积分数是影响格栅结构吸波性能的2个主要因素。 The spatial network method is used to calculate the electromagnetic wave scattering characteristic of carbon fiber composite grid structures filled with absorbing foams. Along with the periodic characteristic of grid structures, using Floquet theory to analyze the periodic boundary condition, simplifying the analytical model to a cell, then the absorbing ability of different cell sizes was analyzed from the results. The numerical analysis result shows that the absorbing ability of the carbon fiber composite grid structure filled with foams is better than that of the structures without foams. The thickness and volume fraction of the filled foams are the major factors affecting the reflectivity of the grid structure.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2009年第3期162-168,共7页 Acta Materiae Compositae Sinica
基金 国家自然科学基金(10572012) 航空科学基金(2008ZA51010)
关键词 吸波泡沫 复合材料 格栅结构 电磁散射 空间回路网法 周期性结构 absorbing foams composite grid structures electromagnetic wave scattering spatial network method periodic structures
  • 相关文献

参考文献11

  • 1张志峰,陈浩然,李煊,蒋元兴.先进复合材料格栅圆柱壳优化设计的混合遗传算法[J].复合材料学报,2005,22(2):166-171. 被引量:28
  • 2吴德财,徐元铭,万青.先进复合材料格栅加筋板的总体稳定性分析[J].复合材料学报,2007,24(2):168-173. 被引量:20
  • 3Huybrechts S, Meink T E, Wegner P M, et al. Manufacturing theory for advanced grid stiffened structures [J].Composites Part A: Applied Science and Manufacturing, 2001, 33(2):155-161.
  • 4Higgins P E J, Wegner P, Viisoreanu A, et al. Design and testing of Minotaur advanced grid- stiffened fairing [J ]. Composite Structure, 2004, 66(1/4):339-349.
  • 5蒋诗才,邢丽英,李斌太,陈祥宝.格栅结构吸波性能探索研究[J].航空材料学报,2006,26(3):196-198. 被引量:9
  • 6Fan H L, Yang W, Chao Z M. Microwave absorbing composite lattice grids[J].Compos Sci Teehnol, 2007, 67 (15) : 3472-3479.
  • 7Yoshida N, Fukai I. Transient analysis of a stripline having a corner in three dimensional space [J]. IEEE, Transitions on Microwave Theory and Techniques, 1984, 32(5): 491-498.
  • 8Kukutsu N, Yoshida N. Transient analysis of ferrite in three dimensional space [J]. IEEE, Transition on Microwave Theory and Techniques, 1988, 36(1) : 114-125.
  • 9Naito Y, Anzai H. Ferrite grid electromagnetic wave absorbers[J].IEEE, Trans on MTT, 1993, 33(10): 254- 259.
  • 10Anzai H, Saikawa M. The equivalent representation of pyramidal absorbers and its application to the analysis of electromagnetic wave absorber's characteristics[J].IEEE, Trans on MTT, 1995: 563-567.

二级参考文献31

  • 1何山,熊克敏.潜艇雷达隐身用吸波涂料研究[J].航空材料学报,1994,14(1):43-48. 被引量:9
  • 2张志峰,陈浩然,李煊,蒋元兴.先进复合材料格栅圆柱壳优化设计的混合遗传算法[J].复合材料学报,2005,22(2):166-171. 被引量:28
  • 3[1]HUYBRECHTS S.Advanced Grid Stiffened Composite Structures[A].Air Force Research Lab.Space Vehicles Directorate[C].May 25,1998.
  • 4[2]BLACK S.A Grid-Stiffened Alternative to Cored Laminates[A].High-Performance Composites[C].March 2002.12 ~ 15.
  • 5[3]Michacl Thomas Hicks.Design of a Carbon Fiber Composite Grid Structure for the GLAST Spacecraft Using a Novel Manufacturing Technique.SLAC-Report-575,Stanford University,June 2001;
  • 6[4]HELMS J.E.,LI G.,SMITH B.H.Analysis of Grid Stiffened Cylinders," ASME/ETCE 2001;
  • 7[5]JAUNKY N,KNIGHT N.F.Formulation of An Improved Smeared Stiffener Theory of Buckling Analysis of Grid-Stiffened Composite Panels[P].NASA technical Memorandum 110162,June 1995
  • 8黄炎.复合材料三角形加筋圆柱壳的总体失稳分析[J].复合材料学报,1987,4(1):25-31.
  • 9陈浩然 张志峰.先进复合材料格栅加筋结构(AGS)的制造分析和设计理论与方法(SAILR-2003-06)[R].大连:大连理工大学,2003..
  • 10Deb A, Booton M. Finite element models for stiffened plates under transverse loading [J]. Computers & Structures, 1988, 30(6): 110-116.

共引文献60

同被引文献22

  • 1陈燕,葛恩德,傅玉灿,苏宏华,徐九华.碳纤维增强树脂基复合材料制孔技术研究现状与展望[J].复合材料学报,2015,32(2):301-316. 被引量:134
  • 2宋宏伟,杜星文,范子杰.偏心率效应对金属圆柱管轴压性能的影响[J].力学与实践,2004,26(6):22-25. 被引量:5
  • 3Reid S R, Reddy T Y, Gray M D. Static and dynamic axial crushing of foam-filled sheet metal tubes [J]. International Journal of Mechanical Sciences, 1986, 28(5): 295-322.
  • 4Abramowicz W, Wierzbicki T. Axial crushing of foam-filled columns [J]. International Journal of Mechanical Sciences, 1988, 30(3/4): 263-271.
  • 5Wierzbicki T, Bhat S U, Abramowicz W, et al. Alexander revisited-A two folding elements model of progressive crushing of tubes [J]. International Journal of Solids and Structures, 1992, 29(24): 3269-3288.
  • 6Hanssen A G, Langseth M, Hopperstad O S. Static and dynamic crushing of circular aluminium tubes with aluminium foam filler [J]. International Journal of Impact Engineering, 2000, 24(5): 475-507.
  • 7Kavi H, Toksoy A K, Guden M. Predicting energy absorption in a foam-filled thin-walled aluminum tube based on experimentally determined strengthening coefficient [J]. Materials & Design, 2006, 27(4): 263-269.
  • 8Norman J. Energy-absorbing effectiveness factor [J]. International Journal of Impact Engineering, 2010, 37(6): 754-765.
  • 9Zhang Zonghua, Liu Shutian, Tang Zhiliang. Sandwich cylindrical column under axial crushing loads [J]. Thin-Walled Structures, 2010, 48(1): 9-18.
  • 10Song Hongwei, Fan Zijie, Yu Gang, et al. Partition energy absorption of axially crushed aluminum foam-filled hat sections [J]. International Journal of Solids and Structures, 2005, 42(10): 2575-2600.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部